
Oracle® XML Publisher
User’s Guide
Release 11i
Part No. B13817-04

January 2006

Oracle XML Publisher User’s Guide, Release 11i

Part No. B13817-04

Copyright © 2004, 2006, Oracle. All rights reserved.

Primary Author: Leslie Studdard

Contributor: Tim Dexter, Klaus Fabian, Edward Jiang, Incheol Kang, Mark Lin, Kei Saito, Elise
Tung-Loo, Jackie Yeung

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication,
disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software–Restricted Rights
(June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any
third party.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Contents

Send Us Your Comments

Preface

Part 1 User’s Guide

1 XML Publisher Introduction
Introduction . 1-1
Process Overview . 1-3
Structure of this Manual . 1-4

2 Creating an RTF Template
Introduction . 2-1

Supported Modes . 2-2
Prerequisites. 2-2

Overview . 2-2
Using the XML Publisher Template Builder . 2-3
Associating the XML Data to the Template Layout 2-3

Designing the Template Layout . 2-6
Adding Markup to the Template Layout . 2-6

Creating Placeholders. 2-6
Defining Groups . 2-10

Defining Headers and Footers . 2-13
Native Support . 2-13

Images and Charts . 2-14
Images . 2-14
Chart Support . 2-15

Drawing, Shape and Clip Art Support . 2-26
Supported Native Formatting Features. 2-37

General Features . 2-37
Alignment. 2-38
Tables. 2-38
Date Fields . 2-39
Multicolumn Page Support . 2-40

iii

Background and Watermark Support . 2-41
Template Features . 2-43

Page Breaks . 2-43
Initial Page Number . 2-44
Hyperlinks . 2-45
Table of Contents . 2-46
Check Boxes . 2-47
Drop Down Lists . 2-48

Conditional Formatting . 2-51
If Statements. 2-51

If Statements in Boilerplate Text . 2-52
If-then-Else Statements . 2-53
Choose Statements . 2-53
Column Formatting . 2-55
Row Formatting . 2-57
Cell Highlighting. 2-58

Page-Level Calculations . 2-60
Displaying Page Totals . 2-60
Brought Forward/Carried Forward Totals . 2-63
Running Totals. 2-66

Data Handling . 2-67
Sorting . 2-67
Regrouping the XML Data. 2-67

Variables, Parameters, and Properties . 2-74
Using Variables . 2-74
Defining Parameters . 2-74
Setting Properties . 2-76

Advanced Report Layouts . 2-78
Batch Reports . 2-78
Cross-Tab Support . 2-80
Dynamic Data Columns . 2-83

Number and Date Formatting. 2-85
Currency Formatting . 2-96

Calendar and Time Zone Support . 2-97
Using External Fonts . 2-98
Advanced Design Options . 2-99

XPath Overview . 2-99
Namespace Support . 2-102
Using the Context Commands . 2-102
Using XSL Elements . 2-105
Using FO Elements . 2-107

Best Practices . 2-107
Using Tables . 2-107
Using Subtemplates . 2-108

iv

3 Creating a PDF Template
PDF Template Overview . 3-1

Supported Modes . 3-2
Designing the Layout . 3-2
Adding Markup to the Template Layout . 3-4

Creating a Placeholder . 3-5
Defining Groups of Repeating Fields . 3-8

Adding Page Numbers and Page Breaks . 3-9
Performing Calculations . 3-13
Completed PDF Template . 3-14
Runtime Behavior . 3-15
Creating a Template from a Downloaded PDF . 3-15

4 eText Templates
Introduction . 4-1
Structure of eText Templates . 4-2
Constructing the Data Tables . 4-5

Command Rows . 4-5
Structure of the Data Rows . 4-9

Setup Command Tables . 4-12
Expressions, Control Structure, and Functions . 4-20
Identifiers, Operators, and Literals . 4-22

5 Using the Template Manager
Introduction . 5-1
Creating the Data Definition . 5-2

Viewing and Updating a Data Definition . 5-3
Creating the Template . 5-4

Copying a Template . 5-6
Viewing and Updating a Template . 5-6

Updating the Template General Definitions . 5-7
Previewing a Template . 5-7
Editing the Template Layout . 5-7
Adding Localized Templates for Additional Languages 5-8
Mapping PDF Template Fields . 5-8
Setting Runtime Properties for a Template . 5-9

Translatable Templates. 5-9

6 Generating Your Customized Report
Using the Concurrent Manager to Generate Your Custom Output 6-1

7 XML Publisher Extended Functions
Extended SQL Functions . 7-1

v

XSL Equivalents. 7-3
Using FO Elements . 7-4

Part 2 Implementation and Developer’s Guide

8 Administration
XML Publisher Administration . 8-1
Configuration . 8-2
Uploading Font Files . 8-10
Creating Font Mappings . 8-10
Locales . 8-12
Font Fallback Logic . 8-12
Font File Location . 8-13
Predefined Fonts . 8-13
Defining Currency Formats . 8-16

9 Data Templates
Introduction . 9-1
The Data Template Definition . 9-2
Constructing the Data Template. 9-5
How to Call a Data Template . 9-20
Sample Data Templates . 9-24

10 Calling XML Publisher APIs
Introduction . 10-1

XML Publisher Core APIs . 10-1
PDF Form Processing Engine . 10-3
RTF Processor Engine . 10-8
FO Processor Engine . 10-9
PDF Document Merger . 10-20
Document Processor Engine . 10-27
XML Publisher Properties . 10-39
Applications Layer APIs . 10-42
Datasource APIs. 10-43
Template APIs . 10-45

11 Delivery Manager
Introduction . 11-1
Delivering Documents via e-Mail . 11-2
Delivering Your Document to a Printer . 11-6
Delivering Your Documents via Fax . 11-9
Delivering Your Documents to WebDAV Servers 11-10
Deliver Your Documents Using FTP . 11-13

vi

Delivering Documents over Secure FTP . 11-14
Delivering Documents over HTTP . 11-18
Delivering Documents via AS2 . 11-20
Direct and Buffering Modes . 11-24
Monitoring Delivery Status . 11-26
Global Properties . 11-26
Delivering Multiple Requests with a Single Output Stream 11-27
Adding a Custom Delivery Channel . 11-28
Configuration File Support . 11-34
Setting Up CUPS . 11-36

12 Integrating the Document Viewer into an Application
Overview . 12-1
Parameters . 12-1
Implementing the Document Viewer in an Application Page 12-3
Document Viewer Common Region APIs . 12-5

A XML Publisher Conguration File
XML Publisher Configuration File. A-1

Structure . A-2
Properties . A-3
List of Available Properties . A-4
Font Definitions . A-4

B Supported XSL-FO Elements
Supported XSL-FO Elements . B-1

Index

vii

Send Us Your Comments

Oracle XML Publisher User’s Guide, Release 11i
Part No. B13817-04

Oracle welcomes your comments and suggestions on the quality and usefulness of this publication. Your
input is an important part of the information used for revision.

• Did you find any errors?
• Is the information clearly presented?
• Do you need more information? If so, where?
• Are the examples correct? Do you need more examples?
• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and part
number of the documentation and the chapter, section, and page number (if available). You can send
comments to us in the following ways:

• Electronic mail: appsdoc_us@oracle.com
• FAX: 650-506-7200 Attn: Oracle Applications Technology Group Documentation Manager
• Postal service:

Oracle Applications Technology Group Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and electronic mail address
(optional).

If you have problems with the software, please contact your local Oracle Support Services.

ix

Preface

Intended Audience
Welcome to Release 11i of the Oracle XML Publisher User’s Guide.

This manual is intended to instruct users on how to use Oracle XML Publisher and
common desktop tools to create customized reports.

If you are an E-Business Suite customer, this guide assumes you have a working
knowledge of the following:

• The principles and customary practices of your business area.

• Standard request submission in Oracle Applications.

• The Oracle E-Business Suite user interfaces.

To learn more about standard request submission and the Oracle E-Business Suite
graphical user interfaces, read the Oracle Applications User’s Guide.

If you have never used Oracle Applications, Oracle suggests you attend one or more of
the Oracle Applications training classes available through Oracle University.

See Related Documents on page xii for more Oracle Applications product information.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY support,
call 800.446.2398.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation accessible,
with good usability, to the disabled community. To that end, our documentation
includes features that make information available to users of assistive technology.
This documentation is available in HTML format, and contains markup to facilitate
access by the disabled community. Accessibility standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For more information, visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/ .

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an otherwise

xi

empty line; however, some screen readers may not always read a line of text that consists
solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations
that Oracle does not own or control. Oracle neither evaluates nor makes any
representations regarding the accessibility of these Web sites.

Structure
1 XML Publisher Introduction
2 Creating an RTF Template
3 Creating a PDF Template
4 eText Templates
5 Using the Template Manager
This chapter pertains to Oracle E-Business Suite installations only.

6 Generating Your Customized Report
This chapter pertains to Oracle E-Business Suite installations only.

7 XML Publisher Extended Functions
8 Administration
9 Data Templates
10 Calling XML Publisher APIs
11 Delivery Manager
12 Integrating the Document Viewer into an Application
A XML Publisher Conguration File
B Supported XSL-FO Elements

Related Documents

Online Documentation
All Oracle Applications documentation is available online (HTML or PDF).

• PDF Documentation- See the Online Documentation CD for current PDF
documentation for your product with each release. This Documentation CD is also
available on OracleMetaLink and is updated frequently.

• Online Help - You can refer to Oracle Applications Help for current HTML online
help for your product. Oracle provides patchable online help, which you can apply
to your system for updated implementation and end user documentation. No
system downtime is required to apply online help.

• Release Content Document - See the Release Content Document for descriptions
of new features available by release. The Release Content Document is available
on OracleMetaLink.

• About document - Refer to the About document for information about your
release, including feature updates, installation information, and new documentation
or documentation patches that you can download. The About document is available
on OracleMetaLink.

xii

Related Guides
Oracle Applications shares business and setup information with other Oracle
Applications products. Therefore, you may want to refer to other guides when you set
up and use Oracle Applications.

You can read the guides online by choosing Library from the expandable menu on your
HTML help window, by reading from the Oracle Applications Document Library CD
included in your media pack, or by using a Web browser with a URL that your system
administrator provides.

If you require printed guides, you can purchase them from the Oracle Store at
http://oraclestore.oracle.com.

Documents Related to this Product
Oracle Applications User’s Guide

This guide explains how to enter data, query, run reports, and navigate using the
graphical user interface (GUI). This guide also includes information on setting user
profiles, as well as running and reviewing reports and concurrent processes.

Oracle Applications System Administrator’s Guide

This guide provides planning and reference information for the Oracle Applications
System Administrator. It contains information on how to define security and users, set
report output definitions, and manage concurrent processing.

"About" Document

For information about implementation and user documentation, instructions for
applying patches, new and changed setup steps, and descriptions of software
updates, refer to the "About" document for your product. "About" documents are
available on OracleMetaLink for most products starting with Release 11.5.8.

Do Not Use Database Tools to Modify Oracle Applications Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data Browser,
database triggers, or any other tool to modify Oracle Applications data unless otherwise
instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as SQL*Plus
to modify Oracle Applications data, you risk destroying the integrity of your data and
you lose the ability to audit changes to your data.

Because Oracle Applications tables are interrelated, any change you make using an
Oracle Applications form can update many tables at once. But when you modify Oracle
Applications data using anything other than Oracle Applications, you may change a row
in one table without making corresponding changes in related tables. If your tables get
out of synchronization with each other, you risk retrieving erroneous information and
you risk unpredictable results throughout Oracle Applications.

When you use Oracle Applications to modify your data, Oracle Applications
automatically checks that your changes are valid. Oracle Applications also keeps track of
who changes information. If you enter information into database tables using database
tools, you may store invalid information. You also lose the ability to track who has
changed your information because SQL*Plus and other database tools do not keep a
record of changes.

xiii

Part 1
User’s Guide

1
XML Publisher Introduction

This chapter covers the following topics:

• Introduction

• Process Overview

• Structure of this Manual

Introduction
Oracle XML Publisher is a template-based publishing solution delivered with the Oracle
E-Business Suite. It provides a new approach to report design and publishing by
integrating familiar desktop word processing tools with existing E-Business Suite data
reporting. XML Publisher leverages standard, well-known technologies and tools, so
you can rapidly develop and maintain custom report formats.

The flexibility of XML Publisher is a result of the separation of the presentation of the
report from its data structure. The collection of the data is still handled by the E-Business
Suite, but now you can design and control how the report outputs will be presented in
separate template files. At runtime, XML Publisher merges your designed template
files with the report data to create a variety of outputs to meet a variety of business
needs, including:

• Customer-ready PDF documents, such as financial statements, marketing
materials, contracts, invoices, and purchase orders utilizing colors, images, font
styles, headers and footers, and many other formatting and design options.

• HTML output for optimum online viewing.

• Excel output to create a spreadsheet of your report data.

• "Filled-out" third-party provided PDF documents. You can download a PDF
document, such as a government form, to use as a template for your report. At
runtime, the data and template produce a "filled-out" form.

• Flat text files to exchange with business partners for EDI and EFT transmission.

The following graphic displays a few sample documents generated by XML
Publisher:

XML Publisher Introduction 1-1

User Interfaces
XML Publisher provides the Template Manager for E-Business Suite users to register and
maintain report templates and their data sources. Once both have been registered, use
the XML Publisher Concurrent Request to merge the template and its data source into
the customized report.

Note: The Oracle Application Object Library (FND) patch 3435480 fully
integrates XML Publisher with standard request submission both in
Oracle Forms and HTML-based applications. If you have taken this
upgrade, or are running Oracle E-Business Suite 11.5.10 Cumulative
Update 1 (or later) you are not required to run the XML Publisher
Concurrent Request.

Template Manager

The Template Manager is the repository for your templates and data sources. It is
also the interface for to you associate your templates to data definitions and make
them available to XML Publisher at runtime. From the Template Manager you can
download, update, and preview your templates and translations.

XML Report Publisher Concurrent Request

1-2 Oracle XML Publisher User’s Guide

The XML Report Publisher concurrent request produces the final output of your
customized report. Before running this request, run your E-Business Suite report to
obtain the XML data file. The XML Report Publisher request accepts as parameters the
E-Business Suite report request ID and the desired template. The template must be
associated to the report data definition in the Template Manager. The XML Report
Publisher request merges the data and the template.

XML Publisher Desktop Components
XML Publisher provides components that you can install on your desktop to facilitate
template development.

The Template Builder is an extension to Microsoft Word that simplifies the development
of RTF templates. It automates many of the manual steps that would otherwise be
required.

The Template Viewer is a Java application that facilitates the rapid development of
templates by providing advanced preview capabilities for all template types.

Please see OracleMetaLink note 337999.1, "About Oracle XML Publisher Release 5.6" for
the patch number for the Oracle XML Publisher Desktop components. See the patch
readme and help files for user documentation and desktop system requirements.

Process Overview
Creating customized reports using XML Publisher can be divided into two
phases: Design Time and Runtime.

Design Time
1. Register the E-Business Suite report as a Data Definition in the Template Manager.

Create a Data Definition in the Template Manager for E-Business Suite reports
that you wish to customize using XML Publisher. When you create the Data
Definition, the Data Definition Code must match the E-Business Suite report
shortname.

2. Design your template.

Your template files can be either in Rich Text Format (RTF) or Portable Document
Format (PDF).

RTF is a specification used by many word processing applications, such as Microsoft
Word. You design the template using your desktop word processing application and
save the file as an RTF file type (.rtf extension). Insert basic markup tags to the
document to prepare it for merging with the XML data. XML Publisher recognizes
the formatting features that you apply and converts them to XSL-FO.

Use Adobe Acrobat to apply markup tags to your custom-designed or downloaded
PDF template.

3. Register your Template in the Template Manager.

When you create the template in the Template Manager, you register and upload
your RTF or PDF template files. The Template must be assigned to the Data
Definition Code of the E-Business Suite report with which it will be merged.

4. Add desired translations of your RTF template.

XML Publisher Introduction 1-3

XML Publisher’s translation utility allows you to extract the translatable strings from
your template into an XLIFF file. Translate the strings in this file and reupload to the
Template Manager to make the translation available at runtime.

Runtime
1. Set the concurrent program to generate XML.

2. Run the concurrent program using standard request submission to obtain the XML
output.

Note: The Application Object Library (FND) patch
3435480, Publishing Concurrent Requests with XML Publisher, fully
integrates XML Publisher with the concurrent manager’s standard
request submission. Simply run the request and select your template
from the Submit Request interface and the concurrent manager
will call XML Publisher to merge the template with the data all
in a single step. You are not required to run the XML Publisher
Concurrent request. This functionality is also available in the Oracle
E-Business Suite 11.5.10 Cumulative Update 1.

3. Run the XML Publisher Concurrent Request.

The XML Publisher Concurrent Request will prompt you to enter the Request
ID from the previous step, and to select a template, template locale, and output
type. Available templates are those associated to the report Data Definition in the
Template Manager. XML Publisher merges your design template with the XML
data to generate your customized output.

Structure of this Manual
This manual is divided into a User’s Guide and a Developer’s Guide. It contains the
following information to enable you to get started and fully implement the capabilities
of XML Publisher.

User’s Guide

This section includes instructions for designing templates, using the Template
Manager, and generating your report output.

Creating an RTF Template - describes how to use your word processing application in
conjunction with your report XML file to create a customized template for the report.

Creating a PDF Template - describes how to use Adobe Acrobat in conjunction with your
report XML file to create a customized template in PDF.

eText Templates - describes how to create a table-based template to comply with EDI and
EFT file specifications. These templates are processed by the eText Processing Engine to
create flat text files for exchange with business partners.

Using the Template Manager - (pertains to E-Business Suite customers only) describes
how to register your Oracle report as a data definition and upload your templates to
the Template Manager .

Generating Your Customized Output - (pertains to E-Business Suite customers only)
describes how to submit your report request using the concurrent manager to generate
output in your customized template.

Implementation and Developer’s Guide

1-4 Oracle XML Publisher User’s Guide

This section documents configuration information as well as programmatic interaction
with XML Publisher for developers and standalone customers.

Administration - describes the Administration interface that allows you to set
configuration properties, upload fonts, create font mappings, and create currency
mappings.

Data Template - describes how to write a template to extract XML data using XML
Publisher’s data engine.

XML Publisher Extended Functions - describes advanced SQL and XSL functions that
XML Publisher has extended for use in templates.

Calling XML Publisher APIs - describes how to leverage XML Publisher’s processing
engines via APIs.

Delivery Manager - describes how to use XML Publisher’s Delivery Manager APIs to
deliver your documents via multiple channels, and how to create a custom channel.

Integrating the Document Viewer into an Application - describes how to implement
XML Publisher’s document viewer, an Oracle Applications Framework component, in
an application.

XML Publisher Configuration File - describes how to set up a configuration file to set
the Administration properties.

Supported XSL-FO Elements - lists the FO elements supported by the XML Publisher
engines.

XML Publisher Introduction 1-5

2
Creating an RTF Template

This chapter covers the following topics:

• Introduction

• Overview

• Designing the Template Layout

• Adding Markup to the Template Layout

• Defining Headers and Footers

• Images and Charts

• Drawing, Shape and Clip Art Support

• Supported Native Formatting Features

• Template Features

• Conditional Formatting

• Page-Level Calculations

• Data Handling

• Variables, Parameters, and Properties

• Advanced Report Layouts

• Number and Date Formatting

• Calendar and Time Zone Support

• Using External Fonts

• Advanced Design Options

• Best Practices

Introduction
Rich Text Format (RTF) is a specification used by common word processing
applications, such as Microsoft Word. When you save a document, RTF is a file type
option that you select.

XML Publisher’s RTF Template Parser converts documents saved as the RTF file type
to XSL-FO. You can therefore create report designs using many of your standard word
processing application’s design features and XML Publisher will recognize and maintain
the design.

Creating an RTF Template 2-1

During design time, you add data fields and other markup to your template using XML
Publisher’s simplified tags for XSL expressions. These tags associate the XML report data
to your report layout. If you are familiar with XSL and prefer not to use the simplified
tags, XML Publisher also supports the use of pure XSL elements in the template.

In addition to your word processing application’s formatting features, XML Publisher
supports other advanced reporting features such as conditional formatting, dynamic
data columns, running totals, and charts.

If you wish to include code directly in your template, you can include any XSL
element, many FO elements, and a set of SQL expressions extended by XML Publisher.

Supported Modes
XML Publisher supports two methods for creating RTF templates:

• Basic RTF Method

Use any word processing application that supports RTF version 1.6 writer (or later)
to design a template using XML Publisher’s simplified syntax.

• Form Field Method

Using Microsoft Word’s form field feature allows you to place the syntax in hidden
form fields, rather than directly into the design of your template. XML Publisher
supports Microsoft Word 2000 (or later) with Microsoft Windows version 2000 (or
later).

Note: If you use XSL or XSL:FO code rather than the simplified
syntax, you must use the form field method.

This guide describes how to create RTF templates using both methods.

Prerequisites
Before you design your template, you must:

• Know the business rules that apply to the data from your source report.

• Generate a sample of your source report in XML.

• Be familiar with the formatting features of your word processing application.

Overview
Creating an RTF template file consists of two basic steps:

1. Design your template layout.

Use the formatting features of your word processing application and save the file as
RTF.

2. Mark up your template layout.

Insert the XML Publisher simplified tags.

When you design your template layout, you must understand how to associate the XML
input file to the layout. This chapter presents a sample template layout with its input
XML file to illustrate how to make the proper associations to add the markup tags to
the template.

2-2 Oracle XML Publisher User’s Guide

Using the XML Publisher Template Builder
The Template Builder is an extension to Microsoft Word that simplifies the development
of RTF templates. It automates many of the manual steps that are covered in this
chapter. Use it in conjunction with this manual to increase your productivity.

The Template Builder is tightly integrated with Microsoft Word and allows you to
perform the following functions:

• Insert data fields

• Insert data-driven tables

• Insert data-driven forms

• Insert data-driven charts

• Preview your template with sample XML data

• Browse and update the content of form fields

• Extract boilerplate text into an XLIFF translation file and test translations

Manual steps for performing these functions are covered in this chapter. Instructions
and tutorials for using the Template Builder are available from the readme and help files
delivered with the tool.

Note: If you are running XML Publisher through the E-Business
Suite, please see OracleMetaLink note 337999.1, "About Oracle XML
Publisher Release 5.6" for the patch number for the Oracle XML
Publisher Desktop components. See the patch readme and help files for
user documentation and desktop system requirements.

Associating the XML Data to the Template Layout
The following is a sample layout for a Payables Invoice Register:

Sample Template Layout

Note the following:

Creating an RTF Template 2-3

• The data fields that are defined on the template

For example: Supplier, Invoice Number, and Invoice Date

• The elements of the template that will repeat when the report is run.

For example, all the fields on the template will repeat for each Supplier that is
reported. Each row of the invoice table will repeat for each invoice that is reported.

XML Input File
Following is the XML file that will be used as input to the Payables Invoice Register
report template:

Note: To simplify the example, the XML output shown below has been
modified from the actual output from the Payables report.

<?xml version="1.0" encoding="WINDOWS-1252" ?>
- <VENDOR_REPORT>
- <LIST_G_VENDOR_NAME>
- <G_VENDOR_NAME>
<VENDOR_NAME>COMPANY A</VENDOR_NAME>

- <LIST_G_INVOICE_NUM>
- <G_INVOICE_NUM>

<SET_OF_BOOKS_ID>124</SET_OF_BOOKS_ID>
<GL_DATE>10-NOV-03</GL_DATE>
<INV_TYPE>Standard</INV_TYPE>
<INVOICE_NUM>031110</INVOICE_NUM>
<INVOICE_DATE>10-NOV-03</INVOICE_DATE>
<INVOICE_CURRENCY_CODE>EUR</INVOICE_CURRENCY_CODE>
<ENT_AMT>122</ENT_AMT>
<ACCTD_AMT>122</ACCTD_AMT>
<VAT_CODE>VAT22%</VAT_CODE>
</G_INVOICE_NUM>
</LIST_G_INVOICE_NUM>
<ENT_SUM_VENDOR>1000.00</ENT_SUM_VENDOR>
<ACCTD_SUM_VENDOR>1000.00</ACCTD_SUM_VENDOR>
</G_VENDOR_NAME>
</LIST_G_VENDOR_NAME>
<ACCTD_SUM_REP>108763.68</ACCTD_SUM_REP>
<ENT_SUM_REP>122039</ENT_SUM_REP>
</VENDOR_REPORT>
XML files are composed of elements. Each tag set is an element. For example
<INVOICE_DATE> </INVOICE_DATE> is the invoice date element. "INVOICE_DATE"
is the tag name. The data between the tags is the value of the element. For example, the
value of INVOICE_DATE is "10-NOV-03".

The elements of the XML file have a hierarchical structure. Another way of saying this is
that the elements have parent-child relationships. In the XML sample, some elements
are contained within the tags of another element. The containing element is the parent
and the included elements are its children.

Every XML file has only one root element that contains all the other
elements. In this example, VENDOR_REPORT is the root element. The elements
LIST_G_VENDOR_NAME, ACCTD_SUM_REP, and ENT_SUM_REP are contained
between the VENDOR_REPORT tags and are children of VENDOR_REPORT. Each child
element can have child elements of its own.

2-4 Oracle XML Publisher User’s Guide

Identifying Placeholders and Groups
Your template content and layout must correspond to the content and hierarchy of
the input XML file. Each data field in your template must map to an element in the
XML file. Each group of repeating elements in your template must correspond to a
parent-child relationship in the XML file.

To map the data fields you define placeholders. To designate the repeating elements, you
define groups.

Note: XML Publisher supports regrouping of data if your report
requires grouping that does not follow the hierarchy of your incoming
XML data. For information on using this feature, see Regrouping the
XML Data, page 2-67.

Placeholders
Each data field in your report template must correspond to an element in the XML
file. When you mark up your template design, you define placeholders for the XML
elements. The placeholder maps the template report field to the XML element. At
runtime the placeholder is replaced by the value of the element of the same name in
the XML data file.

For example, the "Supplier" field from the sample report layout corresponds to the XML
element VENDOR_NAME. When you mark up your template, you create a placeholder
for VENDOR_NAME in the position of the Supplier field. At runtime, this placeholder
will be replaced by the value of the element from the XML file (the value in the sample
file is COMPANY A).

Identifying the Groups of Repeating Elements
The sample report lists suppliers and their invoices. There are fields that repeat for each
supplier. One of these fields is the supplier’s invoices. There are fields that repeat for
each invoice. The report therefore consists of two groups of repeating fields:

• Fields that repeat for each supplier

• Fields that repeat for each invoice

The invoices group is nested inside the suppliers group. This can be represented as
follows:

Suppliers

• Supplier Name

• Invoices

• Invoice Num

• Invoice Date

• GL Date

• Currency

• Entered Amount

• Accounted Amount

• Total Entered Amount

• Total Accounted Amount

Creating an RTF Template 2-5

Compare this structure to the hierarchy of the XML input file. The fields that belong to
the Suppliers group shown above are children of the element G_VENDOR_NAME. The
fields that belong to the Invoices group are children of the element G_INVOICE_NUM.

By defining a group, you are notifying XML Publisher that for each occurrence of an
element (parent), you want the included fields (children) displayed. At runtime, XML
Publisher will loop through the occurrences of the element and display the fields each
time.

Designing the Template Layout
Use your word processing application’s formatting features to create the design.

For example:

• Select the size, font, and alignment of text

• Insert bullets and numbering

• Draw borders around paragraphs

• Include a watermark

• Include images (jpg, gif, or png)

• Use table autoformatting features

• Insert a header and footer

For additional information on inserting headers and footers, see Defining Headers
and Footers, page 2-13.

For a detailed list of supported formatting features in Microsoft Word, see Supported
Native Formatting Features, page 2-37. Additional formatting and reporting features
are described at the end of this section.

Adding Markup to the Template Layout
XML Publisher converts the formatting that you apply in your word processing
application to XSL-FO. You add markup to create the mapping between your layout and
the XML file and to include features that cannot be represented directly in your format.

The most basic markup elements are placeholders, to define the XML data elements; and
groups, to define the repeating elements.

XML Publisher provides tags to add markup to your template.

Note: For the XSL equivalents of the XML Publisher tags, see XSL
Equivalent Syntax, page 7-3.

Creating Placeholders
The placeholder maps the template field to the XML element data field. At runtime the
placeholder is replaced by the value of the element of the same name in the XML data file.

Enter placeholders in your document using the following syntax:

<?XML element tag name?>

Note: The placeholder must match the XML element tag name exactly. It
is case sensitive.

2-6 Oracle XML Publisher User’s Guide

There are two ways to insert placeholders in your document:

1. Basic RTF Method: Insert the placeholder syntax directly into your template
document.

2. Form Field Method: (Requires Microsoft Word) Insert the placeholder syntax in
Microsoft Word’s Text Form Field Options window. This method allows you to
maintain the appearance of your template.

Basic RTF Method
Enter the placeholder syntax in your document where you want the XML data value
to appear.

Enter the element’s XML tag name using the syntax:

<?XML element tag name?>

In the example, the template field "Supplier" maps to the XML element
VENDOR_NAME. In your document, enter:

<?VENDOR_NAME?>

The entry in the template is shown in the following figure:

Form Field Method
Use Microsoft Word’s Text Form Field Options window to insert the placeholder tags:

1. Enable the Forms toolbar in your Microsoft Word application.

2. Position your cursor in the place you want to create a placeholder.

3. Select the Text Form Field toolbar icon. This action inserts a form field area in your
document.

4. Double-click the form field area to invoke the Text Form Field Options dialog box.

5. (Optional) Enter a description of the field in the Default text field. The entry in this
field will populate the placeholder’s position on the template.

For the example, enter "Supplier 1".

6. Select the Add Help Text button.

7. In the help text entry field, enter the XML element’s tag name using the syntax:

<?XML element tag name?>

You can enter multiple element tag names in the text entry field.

Creating an RTF Template 2-7

In the example, the report field "Supplier" maps to the XML element
VENDOR_NAME. In the Form Field Help Text field enter:

<?VENDOR_NAME?>

The following figure shows the Text Form Field Options dialog box and the Form
Field Help Text dialog box with the appropriate entries for the Supplier field.

8. Select OK to apply.

The Default text is displayed in the form field on your template.

The figure below shows the Supplier field from the template with the added form
field markup.

2-8 Oracle XML Publisher User’s Guide

Complete the Example
The following table shows the entries made to complete the example. The Template Field
Name is the display name from the template. The Default Text Entry is the value entered
in the Default Text field of the Text Form Field Options dialog box (form field method
only). The Placeholder Entry is the XML element tag name entered either in the Form
Field Help Text field (form field method) or directly on the template.

Template Field Name Default Text Entry (Form
Field Method)

Placeholder Entry (XML Tag
Name)

Invoice Num 1234566 <?INVOICE_NUM?>

Invoice Date 1-Jan-2004 <?INVOICE_DATE?>

GL Date 1-Jan-2004 <?GL_DATE?>

Curr USD <?INVOICE_CURRENCY_
CODE?>

Entered Amt 1000.00 <?ENT_AMT?>

Accounted Amt 1000.00 <?ACCTD_AMT?>

(Total of Entered Amt column) 1000.00 <?ENT_SUM_VENDOR?>

(Total of Accounted Amt
column)

1000.00 <?ACCTD_SUM_VENDOR?>

The following figure shows the Payables Invoice Register with the completed form
field placeholder markup.

See the Payables Invoice Register with Completed Basic RTF Markup, page 2-10 for the
completed basic RTF markup.

Creating an RTF Template 2-9

Dening Groups
By defining a group, you are notifying XML Publisher that for each occurrence of an
element, you want the included fields displayed. At runtime, XML Publisher will loop
through the occurrences of the element and display the fields each time.

In the example, for each occurrence of G_VENDOR_NAME in the XML file, we
want the template to display its child elements VENDOR_NAME (Supplier
Name), G_INVOICE_NUM (the Invoices group), Total Entered Amount, and Total
Accounted Amount. And, for each occurrence of G_INVOICE_NUM (Invoices
group), we want the template to display Invoice Number, Invoice Date, GL
Date, Currency, Entered Amount, and Accounted Amount.

To designate a group of repeating fields, insert the grouping tags around the elements
to repeat.

Insert the following tag before the first element:

<?for-each:XML group element tag name?>

Insert the following tag after the final element:

<?end for-each?>

Grouping scenarios
Note that the group element must be a parent of the repeating elements in the XML
input file.

• If you insert the grouping tags around text or formatting elements, the text and
formatting elements between the group tags will be repeated.

• If you insert the tags around a table, the table will be repeated.

• If you insert the tags around text in a table cell, the text in the table cell between
the tags will be repeated.

• If you insert the tags around two different table cells, but in the same table row, the
single row will be repeated.

• If you insert the tags around two different table rows, the rows between the tags will
be repeated (this does not include the row that contains the "end group" tag).

Basic RTF Method
Enter the tags in your document to define the beginning and end of the repeating
element group.

To create the Suppliers group in the example, insert the tag

<?for-each:G_VENDOR_NAME?>

before the Supplier field that you previously created.

Insert <?end for-each?> in the document after the summary row.

The following figure shows the Payables Invoice Register with the basic RTF grouping
and placeholder markup:

2-10 Oracle XML Publisher User’s Guide

Form Field Method
1. Insert a form field to designate the beginning of the group.

In the help text field enter:

<?for-each:group element tag name?>

To create the Suppliers group in the example, insert a form field before the Suppliers
field that you previously created. In the help text field enter:

<?for-each:G_VENDOR_NAME?>

For the example, enter the Default text "Group: Suppliers" to designate the beginning
of the group on the template. The Default text is not required, but can make the
template easier to read.

2. Insert a form field after the final placeholder element in the group. In the help text
field enter <?end for-each?>.

For the example, enter the Default text "End: Suppliers" after the summary row to
designate the end of the group on the template.

The following figure shows the template after the markup to designate the Suppliers
group was added.

Creating an RTF Template 2-11

Complete the Example
The second group in the example is the invoices group. The repeating elements in this
group are displayed in the table. For each invoice, the table row should repeat. Create a
group within the table to contain these elements.

Note: For each invoice, only the table row should repeat, not the entire
table. Placing the grouping tags at the beginning and end of the table
row will repeat only the row. If you place the tags around the table, then
for each new invoice the entire table with headings will be repeated.

To mark up the example, insert the grouping tag <?for-each:G_INVOICE_NUM?> in
the table cell before the Invoice Num placeholder. Enter the Default text "Group:Invoices"
to designate the beginning of the group.

Insert the end tag inside the final table cell of the row after the Accounted Amt
placeholder. Enter the Default text "End:Invoices" to designate the end of the group.

The following figure shows the completed example using the form field method:

2-12 Oracle XML Publisher User’s Guide

Dening Headers and Footers

Native Support
XML Publisher supports the use of the native RTF header and footer feature. To create a
header or footer, use the your word processing application’s header and footer insertion
tools. As an alternative, or if you have multiple headers and footers, you can use
start:body and end body tags to distinguish the header and footer regions from
the body of your report.

Inserting Placeholders in the Header and Footer
At the time of this writing, Microsoft Word does not support form fields in the header
and footer. You must therefore insert the placeholder syntax directly into the template
(basic RTF method), or use the start body/end body syntax described in the next section.

Multiple or Complex Headers and Footers
If your template requires multiple headers and footers, create them by using XML
Publisher tags to define the body area of your report. You may also want to use this
method if your header and footer contain complex objects that you wish to place in form
fields. When you define the body area, the elements occurring before the beginning of
the body area will compose the header. The elements occurring after the body area
will compose the footer.

Use the following tags to enclose the body area of your report:

<?start:body?>

<?end body?>

Use the tags either directly in the template, or in form fields.

The Payables Invoice Register contains a simple header and footer and therefore does
not require the start body/end body tags. However, if you wanted to add another header
to the template, define the body area as follows:

Creating an RTF Template 2-13

1. Insert <?start:body?> before the Suppliers group tag: <?for-each:G_VENDOR_
NAME?>

2. Insert <?end body?> after the Suppliers group closing tag: <?end for-each?>

The following figure shows the Payables Invoice Register with the start body/end body
tags inserted:

Images and Charts

Images
XML Publisher supports several methods for including images in your published
document:

Direct Insertion
Insert the jpg, gif, or png image directly in your template.

URL Reference
URL Reference

1. Insert a dummy image in your template.

2. In the Format Picture dialog box select theWeb tab. Enter the following syntax in
the Alternative text region to reference the image URL:

url:{’http://image location’}

For example, enter: url:{’http://www.oracle.com/images/ora_log.
gif’}

OA Media Directory Reference
Note: This method only applies to Oracle E-Business Suite installations.

1. Insert a dummy image in your template.

2. In the Format Picture dialog box select theWeb tab. Enter the following syntax in
the Alternative text region to reference the OA_MEDIA directory:

2-14 Oracle XML Publisher User’s Guide

url:{’${OA_MEDIA}/image name’}

For example, enter:

url:{’${OA_MEDIA}/ORACLE_LOGO.gif’}

Element Reference from XML File
1. Insert a dummy image in your template.

2. In the Format Picture dialog box select theWeb tab. Enter the following syntax in
the Alternative text region to reference the image URL:

url:{IMAGE_LOCATION}

where IMAGE_LOCATION is an element from your XML file that holds the full
URL to the image.

You can also build a URL based on multiple elements at runtime. Just use the
concat function to build the URL string. For example:

url:{concat(SERVER,’/’,IMAGE_DIR,’/’,IMAGE_FILE)}

This method can also be used with the OA_MEDIA reference as follows:

url:{concat(’${OA_MEDIA}’,’/’,IMAGE_FILE)}

Chart Support
XML Publisher leverages the graph capabilities of Oracle Business Intelligence Beans
(BI Beans) to enable you to define charts and graphs in your RTF templates that will
be populated with data at runtime. XML Publisher supports all the graph types and
component attributes available from the BI Beans graph DTD.

The BI Beans graph DTD is fully documented in the following technical note available
from the Oracle Technology Network [http://www.oracle.com/technology/index.html]
(OTN): "DTD for Customizing Graphs in Oracle Reports."

The following summarizes the steps to add a chart to your template. These steps will be
discussed in detail in the example that follows:

1. Insert a dummy image in your template to define the size and position of your chart.

2. Add the definition for the chart to the Alternative text box of the dummy image. The
chart definition requires XSL commands.

3. At runtime XML Publisher calls the BI Beans applications to render the image that is
then inserted into the final output document.

Adding a Sample Chart
Following is a piece of XML data showing total sales by company division.

Creating an RTF Template 2-15

http://www.oracle.com/technology/index.html

<sales year=2004>
<division>
<name>Groceries</name>
<totalsales>3810</totalsales>
<costofsales>2100</costofsales>
</division>
<division>
<name>Toys</name>
<totalsales>2432</totalsales>
<costofsales>1200</costofsales>
</division>
<division>
<name>Cars</name>
<totalsales>6753</totalsales>
<costofsales>4100</costofsales>
</division>
<division>
<name>Hardware</name>
<totalsales>2543</totalsales>
<costofsales>1400</costofsales>
</division>
<division>
<name>Electronics</name>
<totalsales>5965</totalsales>
<costofsales>3560</costofsales>
</division>
</sales>
This example will show how to insert a chart into your template to display it as a vertical
bar chart as shown in the following figure:

2-16 Oracle XML Publisher User’s Guide

Note the following attributes of this chart:

• The style is a vertical bar chart.

• The chart displays a background grid.

• The components are colored.

• Sales totals are shown as Y-axis labels.

• Divisions are shown as X-axis labels.

• The chart is titled.

• The chart displays a legend.

Each of these properties can be customized to suit individual report requirements.

Inserting the Dummy Image
The first step is to add a dummy image to the template in the position you want the
chart to appear. The image size will define how big the chart image will be in the final
document.

Important: You must insert the dummy image as a "Picture" and not any
other kind of object.

The following figure shows an example of a dummy image:

Creating an RTF Template 2-17

The image can be embedded inside a for-each loop like any other form field if you want
the chart to be repeated in the output based on the repeating data. In this example, the
chart is defined within the sales year group so that a chart will be generated for each year
of data present in the XML file.

Right-click the image to open the Format Picture palette and select theWeb tab. Use the
Alternative text entry box to enter the code to define the chart characteristics and data
definition for the chart.

Adding Code to the Alternative Text Box
The following graphic shows an example of the XML Publisher code in the Format
Picture Alternative text box:

2-18 Oracle XML Publisher User’s Guide

The content of the Alternative text represents the chart that will be rendered in the final
document. For this chart, the text is as follows:

Creating an RTF Template 2-19

chart:
<Graph graphType = "BAR_VERT_CLUST">
<Title text="Company Sales 2004" visible="true" horizontalAlignme
nt="CENTER"/>
<Y1Title text="Sales in Thousands" visible="true"/>
<O1Title text="Division" visible="true"/>
<LocalGridData colCount="{count(//division)}" rowCount="1">
<RowLabels>
<Label>Total Sales $1000s</Label>
</RowLabels>
<ColLabels>
<xsl:for-each select="//division">
<Label>
<xsl:value-of select="name"/>

</Label>
</xsl:for-each>
</ColLabels>
<DataValues>
<RowData>
<xsl:for-each select="//division">
<Cell>
<xsl:value-of select="totalsales"/>

</Cell>
</xsl:for-each>
</RowData>
</DataValues>
</LocalGridData>
</Graph>
The first element of your chart text must be the chart: element to inform the RTF
parser that the following code describes a chart object.

Next is the opening <Graph> tag. Note that the whole of the code resides within
the tags of the <Graph> element. This element has an attribute to define the chart
type: graphType. If this attribute is not declared, the default chart is a vertical bar
chart. BI Beans supports many different chart types. Several more types are presented in
this section. For a complete listing, see the BI Beans graph DTD documentation.

The following code section defines the chart type and attributes:

<Title text="Company Sales 2004" visible="true" horizontalAlignme
nt="CENTER"/>
<Y1Title text="Sales in Thousands" visible="true"/>
<O1Title text="Division" visible="true"/>

All of these values can be declared or you can substitute values from the XML data at
runtime. For example, you can retrieve the chart title from an XML tag by using the
following syntax:

<Title text="{CHARTTITLE}" visible="true" horizontalAlighment="CE
NTER"/>
where "CHARTTITLE" is the XML tag name that contains the chart title. Note that
the tag name is enclosed in curly braces.

The next section defines the column and row labels:

2-20 Oracle XML Publisher User’s Guide

<LocalGridData colCount="{count(//division)}" rowCount="1">
<RowLabels>
<Label>Total Sales $1000s</Label>
</RowLabels>
<ColLabels>
<xsl:for-each select="//division">
<Label>
<xsl:value-of select="name"/>

</Label>
</xsl:for-each>
</ColLabels>

The LocalGridData element has two attributes: colCount and rowCount. These
define the number of columns and rows that will be shown at runtime. In this example, a
count function calculates the number of columns to render:

colCount="{count(//division)}"
The rowCount has been hard-coded to 1. This value defines the number of sets of data
to be charted. In this case it is 1.

Next the code defines the row and column labels. These can be declared, or a value
from the XML data can be substituted at runtime. The row label will be used in the
chart legend (that is, "Total Sales $1000s").

The column labels for this example are derived from the data: Groceries, Toys, Cars, and
so on. This is done using a for-each loop:

<ColLabels>
<xsl:for-each select="//division">
<Label>
<xsl:value-of select="name"/>

</Label>
</xsl:for-each>
</ColLabels>

This code loops through the <division> group and inserts the value of the <name>
element into the <Label> tag. At runtime, this will generate the following XML:

<ColLabels>
<Label>Groceries</Label>
<Label>Toys</Label>
<Label>Cars</Label>
<Label>Hardware</Label>
<Label>Electronics</Label>

</ColLabels>

The next section defines the actual data values to chart:

<DataValues>
<RowData>
<xsl:for-each select="//division">
<Cell>
<xsl:value-of select="totalsales"/>

</Cell>
</xsl:for-each>
</RowData>
</DataValues>

Creating an RTF Template 2-21

Similar to the labels section, the code loops through the data to build the XML that is
passed to the BI Beans rendering engine. This will generate the following XML:

<DataValues>
<RowData>
<Cell>3810</Cell>
<Cell>2432</Cell>
<Cell>6753</Cell>
<Cell>2543</Cell>
<Cell>5965</Cell>

</RowData>
</DataValues>

Additional Chart Samples
You can also display this data in a pie chart as shown in the following figure:

The following is the code added to the template to render this chart at runtime:

2-22 Oracle XML Publisher User’s Guide

chart:
<Graph graphType="PIE">
<Title text="Company Sales 2004" visible="true"
horizontalAlignment="CENTER"/>

<LocalGridData rowCount="{count(//division)}" colCount="1">
<RowLabels>
<xsl:for-each select="//division">
<Label>
<xsl:value-of select="name"/>
</Label>
</xsl:for-each>
</RowLabels>
<DataValues>
<xsl:for-each select="//division">
<RowData>
<Cell>
<xsl:value-of select="totalsales"/>
</Cell>

</RowData>
</xsl:for-each>
</DataValues>
</LocalGridData>
</Graph>

Horizontal Bar Chart Sample
The following example shows total sales and cost of sales charted in a horizontal bar
format. This example also adds the data from the cost of sales element (<costofsales>)
to the chart:

The following code defines this chart in the template:

Creating an RTF Template 2-23

chart:
<Graph graphType = "BAR_HORIZ_CLUST">
<Title text="Company Sales 2004" visible="true" horizontalAlignme
nt="CENTER"/>
<LocalGridData colCount="{count(//division)}" rowCount="2">
<RowLabels>
<Label>Total Sales (’000s)</Label>
<Label>Cost of Sales (’000s)</Label>
</RowLabels>
<ColLabels>
<xsl:for-each select="//division">
<Label><xsl:value-of select="name"/></Label>
</xsl:for-each>
</ColLabels>
<DataValues>
<RowData>
<xsl:for-each select="//division">
<Cell><xsl:value-of select="totalsales"/></Cell>

</xsl:for-each>
</RowData>
<RowData>
<xsl:for-each select="//division">
<Cell><xsl:value-of select="costofsales"/></Cell>
</xsl:for-each>

</RowData>
</DataValues>
</LocalGridData>
</Graph>
To accommodate the second set of data, the rowCount attribute for the LocalGridData
element is set to 2. Also note the DataValues section defines two sets of data: one
for Total Sales and one for Cost of Sales.

Changing the Appearance of Your Chart
There are many attributes available from the BI Beans graph DTD that you can
manipulate to change the look and feel of your chart. For example, the previous chart
can be changed to remove the grid, place a graduated background, and change the bar
colors and fonts as shown in the following figure:

2-24 Oracle XML Publisher User’s Guide

The code to support this is as follows:

chart:
<Graph graphType = "BAR_HORIZ_CLUST">
<SeriesItems>
<Series id="0" color="#ffcc00"/>
<Series id="1" color="#ff6600"/>
</SeriesItems>
<O1MajorTick visible="false"/>
<X1MajorTick visible="false"/>
<Y1MajorTick visible="false"/>
<Y2MajorTick visible="false"/>
<MarkerText visible="true" markerTextPlace="MTP_CENTER"/>
<PlotArea borderTransparent="true">
<SFX fillType="FT_GRADIENT" gradientDirection="GD_LEFT"
gradientNumPins="300">
<GradientPinStyle pinIndex="1" position="1"
gradientPinLeftColor="#999999"
gradientPinRightColor="#cc6600"/>
</SFX>
</PlotArea>
<Title text="Company Sales 2004" visible="true">
<GraphFont name="Tahoma" bold="false"/>
</Title>
. . .
</Graph>
The colors for the bars are defined in the SeriesItems section. The colors are defined
in hexadecimal format as follows:

Creating an RTF Template 2-25

<SeriesItems>
<Series id="0" color="#ffcc00"/>
<Series id="1" color="#ff6600"/>

</SeriesItems>
The following code hides the chart grid:

<O1MajorTick visible="false"/>
<X1MajorTick visible="false"/>
<Y1MajorTick visible="false"/>
<Y2MajorTick visible="false"/>

The MarkerText tag places the data values on the chart bars:

<MarkerText visible="true" markerTextPlace="MTP_CENTER"/>
The PlotArea section defines the background. The SFX element establishes the gradient
and the borderTransparent attribute hides the plot border:

<PlotArea borderTransparent="true">
<SFX fillType="FT_GRADIENT" gradientDirection="GD_LEFT"

gradientNumPins="300">
<GradientPinStyle pinIndex="1" position="1"
gradientPinLeftColor="#999999"
gradientPinRightColor="#cc6600"/>

</SFX>
</PlotArea>
The Title text tag has also been updated to specify a new font type and size:

<Title text="Company Sales 2004" visible="true">
<GraphFont name="Tahoma" bold="false"/>

</Title>

Drawing, Shape and Clip Art Support
XML Publisher supports Microsoft Word drawing, shape, and clip art features. You can
add these objects to your template and they will be rendered in your final PDF output.

The following AutoShape categories are supported:

• Lines - straight, arrowed, connectors, curve, free form, and scribble

• Connectors - straight connectors only are supported. Curved connectors can be
achieved by using a curved line and specifying the end styles to the line.

• Basic Shapes - all shapes are supported.

• Block arrows - all arrows are supported.

• Flowchart - all flowchart objects are supported.

• Stars and Banners - all objects are supported.

• Callouts - the "line" callouts are not supported.

• Clip Art - add images to your templates using the Microsoft Clip Art libraries

Freehand Drawing
Use the freehand drawing tool in Microsoft Word to create drawings in your template
to be rendered in the final PDF output.

2-26 Oracle XML Publisher User’s Guide

Layering
You can layer shapes on top of each other and use the transparency setting in Microsoft
Word to allows shapes on lower layers to show through. The following graphic shows
an example of layered shapes:

3-D Effects
XML Publisher does not currently support the 3-D option for shapes.

Microsoft Equation
Use the equation editor to generate equations in your output. The following figure
shows an example of an equation:

Organization Chart
Use the organization chart functionality in your templates and the chart will be rendered
in the output. The following image shows an example of an organization chart:

Creating an RTF Template 2-27

WordArt
You can use Microsoft Word’s WordArt functionality in your templates. The following
graphic shows a WordArt example:

Data Driven Shape Support
In addition to supporting the static shapes and features in your templates, XML
Publisher supports the manipulation of shapes based on incoming data or parameters, as
well. The following manipulations are supported:

• Replicate

• Move

• Change size

• Add text

• Skew

• Rotate

These manipulations not only apply to single shapes, but you can use the group feature
in Microsoft Word to combine shapes together and manipulate them as a group.

Placement of Commands
Enter manipulation commands for a shape in the Web tab of the shape’s properties
dialog as shown in the following example figure:

2-28 Oracle XML Publisher User’s Guide

Replicate a Shape
You can replicate a shape based on incoming XML data in the same way you replicate
data elements in a for-each loop. To do this, use a for-each@shape command in
conjunction with a shape-offset declaration. For example, to replicate a shape down the
page, use the following syntax:

<?for-each@shape:SHAPE_GROUP?>
<?shape-offset-y:(position()-1)*100?>
<?end for-each?>
where

for-each@shape opens the for-each loop for the shape context

SHAPE_GROUP is the name of the repeating element from the XML file. For each
occurrence of the element SHAPE_GROUP a new shape will be created.

shape-offset-y: - is the command to offset the shape along the y-axis.

(position()-1)*100) - sets the offset in pixels per occurrence. The XSL position
command returns the record counter in the group (that is 1,2,3,4); one is subtracted
from that number and the result is multiplied by 100. Therefore for the first occurrence
the offset would be 0: (1-1) * 100. The offset for the second occurrence would be 100
pixels: (2-1) *100. And for each subsequent occurrence the offset would be another
100 pixels down the page.

Add Text to a Shape
You can add text to a shape dynamically either from the incoming XML data or from a
parameter value. In the property dialog enter the following syntax:

<?shape-text:SHAPETEXT?>

Creating an RTF Template 2-29

where SHAPETEXT is the element name in the XML data. At runtime the text will be
inserted into the shape.

Add Text Along a Path
You can add text along a line or curve from incoming XML data or a parameter. After
drawing the line, in the property dialog enter:

<?shape-text-along-path:SHAPETEXT?>
where SHAPETEXT is the element from the XML data. At runtime the value of the
element SHAPETEXT will be inserted above and along the line.

Moving a Shape
You can move a shape or transpose it along both the x and y-axes based on the XML
data. For example to move a shape 200 pixels along the y-axis and 300 along the
x-axis, enter the following commands in the property dialog of the shape:

<?shape-offset-x:300?>
<?shape-offset-y:200?>

Rotating a Shape
To rotate a shape about a specified axis based on the incoming data, use the following
command:

<?shape-rotate:ANGLE;’POSITION’?>
where

ANGLE is the number of degrees to rotate the shape. If the angle is positive, the rotation
is clockwise; if negative, the rotation is counterclockwise.

POSITION is the point about which to carry out the rotation, for example, ’left/top’.
Valid values are combinations of left, right, or center with center, top, or bottom. The
default is left/top. The following figure shows these valid values:

To rotate this rectangle shape about the bottom right corner, enter the following syntax:

<?shape-rotate:60,’right/bottom’?>

2-30 Oracle XML Publisher User’s Guide

You can also specify an x,y coordinate within the shape itself about which to rotate.

Skewing a Shape
You can skew a shape along its x or y axis using the following commands:

<?shape-skew-x:ANGLE;’POSITION’?>
<?shape-skew-y:ANGLE;’POSITION’?>
where

ANGLE is the number of degrees to skew the shape. If the angle is positive, the skew
is to the right.

POSITION is the point about which to carry out the rotation, for example, ’left/top’.
Valid values are combinations of left, right, or center with center, top, or bottom. See the
figure under Rotating a Shape, page 2-30. The default is ’left/top’.

For example, to skew a shape by 30 degrees about the bottom right hand corner, enter
the following:

<?shape-skew-x:number(.)*30;’right/bottom’?>

Changing the Size of a Shape
You can change the size of a shape using the appropriate commands either along a single
axis or both axes. To change a shape’s size along both axes, use:

<?shape-size:RATIO?>
where RATIO is the numeric ratio to increase or decrease the size of the shape. Therefore
a value of 2 would generate a shape twice the height and width of the original. A value
of 0.5 would generate a shape half the size of the original.

To change a shape’s size along the x or y axis, use:

<?shape-size-x:RATIO?>
<?shape-size-y:RATIO?>
Changing only the x or y value has the effect of stretching or shrinking the shape along
an axis. This can be data driven.

Combining Commands
You can also combine these commands to carry out multiple transformations on a shape
at one time. For example, you can replicate a shape and for each replication, rotate it by
some angle and change the size at the same time.

The following example shows how to replicate a shape, move it 50 pixels down the
page, rotate it by five degrees about the center, stretch it along the x-axis and add the
number of the shape as text:

<for-each@shape:SHAPE_GROUP?>
<?shape-text:position()?>
<?shape-offset-y:position()*50?>
<?shape-rotate:5;’center/center’?>
<?shape-size-x:position()+1?>
<end for-each?>
This would generate the output shown in the following figure:

Creating an RTF Template 2-31

CD Ratings Worked Example
This example demonstrates how to set up a template that will generate a star-rating
based on data from an incoming XML file.

Assume the following incoming XML data:

2-32 Oracle XML Publisher User’s Guide

<CATALOG>
<CD>
<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>
<USER_RATING>4</USER_RATING>
</CD>
<CD>
<TITLE>Hide Your Heart</TITLE>
<ARTIST>Bonnie Tylor</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>
<USER_RATING>3</USER_RATING>
</CD>
<CD>
<TITLE>Still got the blues</TITLE>
<ARTIST>Gary More</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Virgin Records</COMPANY>
<PRICE>10.20</PRICE>
<YEAR>1990</YEAR>
<USER_RATING>5</USER_RATING>
</CD>
<CD>
<TITLE>This is US</TITLE>
<ARTIST>Gary Lee</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Virgin Records</COMPANY>
<PRICE>12.20</PRICE>
<YEAR>1990</YEAR>
<USER_RATING>2</USER_RATING>
</CD>
<CATALOG>
Notice there is a USER_RATING element for each CD. Using this data element and the
shape manipulation commands, we can create a visual representation of the ratings so
that the reader can compare them at a glance.

A template to achieve this is shown in the following figure:

The values for the fields are shown in the following table:

Creating an RTF Template 2-33

Field Form Field Entry

F <?for-each:CD?>

TITLE <?TITLE?>

ARTIST <?ARTIST?>

E <?end for-each?>

(star shape) Web Tab Entry:
<?for-each@shape:xdoxslt:foreach_number($_XDOCTX,
0,USER_RATING,1)?>

<?shape-offset-x:(position()-1)*25?>

<?end for-each?>

The form fields hold the simple element values. The only difference with this template
is the value for the star shape. The replication command is placed in the Web tab of
the Format AutoShape dialog.

In the for-each@shape command we are using a command to create a "for...next loop"
construct. We specify 1 as the starting number; the value of USER_RATING as the final
number; and 1 as the step value. As the template loops through the CDs, we create an
inner loop to repeat a star shape for every USER_RATING value (that is, a value of 4
will generate 4 stars). The output from this template and the XML sample is shown
in the following graphic:

Grouped Shape Example
This example shows how to combine shapes into a group and have them react to the
incoming data both individually and as a group. Assume the following XML data:

2-34 Oracle XML Publisher User’s Guide

<SALES>
<SALE>
<REGION>Americas</REGION>
<SOFTWARE>1200</SOFTWARE>
<HARDWARE>850</HARDWARE>
<SERVICES>2000</SERVICES>
</SALE>
<SALE>
<REGION>EMEA</REGION>
<SOFTWARE>1000</SOFTWARE>
<HARDWARE>800</HARDWARE>
<SERVICES>1100</SERVICES>
</SALE>
<SALE>
<REGION>APAC</REGION>
<SOFTWARE>900</SOFTWARE>
<HARDWARE>1200</HARDWARE>
<SERVICES>1500</SERVICES>
</SALE>
</SALES>
You can create a visual representation of this data so that users can very quickly
understand the sales data across all regions. Do this by first creating the composite shape
in Microsoft Word that you wish to manipulate. The following figure shows a composite
shape made up of four components:

The shape consists of three cylinders: red, yellow, and blue. These will represent the
data elements software, hardware, and services. The combined object also contains a
rectangle that is enabled to receive text from the incoming data.

The following commands are entered into the Web tab:

Red cylinder: <?shape-size-y:SOFTWARE div 1000;’left/bottom’?>

Yellow cylinder: <?shape-size-y:HARDWARE div 1000;’left/bottom’?>

Blue cylinder: <?shape-size-y:SERVICES div 1000;’left/bottom’?>

The shape-size command is used to stretch or shrink the cylinder based on the values of
the elements SOFTWARE, HARDWARE, and SERVICES. The value is divided by 1000 to
set the stretch or shrink factor. For example, if the value is 2000, divide that by 1000 to
get a factor of 2. The shape will generate as twice its current height.

The text-enabled rectangle contains the following command in its Web tab:

<?shape-text:REGION?>
At runtime the value of the REGION element will appear in the rectangle.

Creating an RTF Template 2-35

All of these shapes were then grouped together and in the Web tab for the grouped
object, the following syntax is added:

<?for-each@shape:SALE?>
<?shape-offset-x:(position()-1)*110?>
<?end for-each?>
In this set of commands, the for-each@shape loops over the SALE group. The
shape-offset command moves the next shape in the loop to the right by a specific
number of pixels. The expression (position()-1) sets the position of the object. The
position() function returns a record counter while in the loop, so for the first shape, the
offset would be 1-1*100, or 0, which would place the first rendering of the object in the
position defined in the template. Subsequent occurrences would be rendered at a 100
pixel offset along the x-axis (to the right).

At runtime three sets of shapes will be rendered across the page as shown in the
following figure:

To make an even more visually representative report, these shapes can be superimposed
onto a world map. Just use the "Order" dialog in Microsoft Word to layer the map
behind the grouped shapes.

Microsoft Word 2000 Users: After you add the background map and overlay the shape
group, use the Grouping dialog to make the entire composition one group.

Microsoft Word 2002/3 Users: These versions of Word have an option under Tools
> Options, General tab to "Automatically generate drawing canvas when inserting
autoshapes". Using this option removes the need to do the final grouping of the map
and shapes. We can now generate a visually appealing output for our report as seen
in the following figure:

2-36 Oracle XML Publisher User’s Guide

Supported Native Formatting Features
In addition to the features already listed, XML Publisher supports the following features
of Microsoft Word.

General Features
• Large blocks of text

• Page breaks

To insert a page break, insert a Ctrl-Enter keystroke just before the closing tag of a
group. For example if you want the template to start a new page for every Supplier
in the Payables Invoice Register:

1. Place the cursor just before the Supplier group’s closing <?end for-each?> tag.

2. Press Ctrl-Enter to insert a page break.

At runtime each Supplier will start on a new page.

Using this Microsoft Word native feature will cause a single blank page to print at
the end of your report output. To avoid this single blank page, use XML Publisher’s
page break alias. See Special Features: Page Breaks, page 2-43.

• Page numbering

Insert page numbers into your final report by using the page numbering methods of
your word processing application. For example, if you are using Microsoft Word:

1. From the Insert menu, select Page Numbers...

2. Select the Position, Alignment, and Format as desired.

Creating an RTF Template 2-37

At runtime the page numbers will be displayed as selected.

Alignment
Use your word processor’s alignment features to align text, graphics, objects, and tables.

Note: Bidirectional languages are handled automatically using your
word processing application’s left/right alignment controls.

Tables
Supported table features include:

• Nested Tables

• Cell Alignment

You can align any object in your template using your word processing application’s
alignment tools. This alignment will be reflected in the final report output.

• Row spanning and column spanning

You can span both columns and rows in your template as follows:

1. Select the cells you wish to merge.

2. From the Table menu, selectMerge Cells.

3. Align the data within the merged cell as you would normally.

At runtime the cells will appear merged.

• Table Autoformatting

XML Publisher recognizes the table autoformats available in Microsoft Word.

1. Select the table you wish to format.

2. From the Table menu, select Autoformat.

3. Select the desired table format.

At runtime, the table will be formatted using your selection.

• Cell patterns and colors

You can highlight cells or rows of a table with a pattern or color.

1. Select the cell(s) or table.

2. From the Table menu, select Table Properties.

3. From the Table tab, select the Borders and Shading... button.

4. Add borders and shading as desired.

• Repeating table headers

If your data is displayed in a table, and you expect the table to extend across multiple
pages, you can define the header rows that you want to repeat at the start of each
page.

1. Select the row(s) you wish to repeat on each page.

2. From the Table menu, select Heading Rows Repeat.

2-38 Oracle XML Publisher User’s Guide

• Prevent rows from breaking across pages.

If you want to ensure that data within a row of a table is kept together on a page, you
can set this as an option using Microsoft Word’s Table Properties.

1. Select the row(s) that you want to ensure do not break across a page.

2. From the Table menu, select Table Properties.

3. From the Row tab, deselect the check box "Allow row to break across pages".

• Fixed-width columns

To set the widths of your table columns:

1. Select a column and then select Table > Table Properties.

2. In the Table Properties dialog, select the Column tab.

3. Enable the Preferred width checkbox and then enter the width as a Percent
or in Inches.

4. Select the Next Column button to set the width of the next column.

Note that the total width of the columns must add up to the total width of the table.

The following figure shows the Table Properties dialog:

Date Fields
Insert dates using the date feature of your word processing application. Note that this
date will correspond to the publishing date, not the request run date.

Creating an RTF Template 2-39

Multicolumn Page Support
XML Publisher supports Microsoft Word’s Columns function to enable you to publish
your output in multiple columns on a page.

Select Format > Columns to display the Columns dialog box to define the number of
columns for your template. The following graphic shows the Columns dialog:

Multicolumn Page Example: Labels
To generate address labels in a two-column format:

1. Divide your page into two columns using the Columns command.

2. Define the repeatable group in the first column. Note that you define the repeatable
group only in the first column, as shown in the following figure:

Tip: To prevent the address block from breaking across pages or
columns, embed the label block inside a single-celled table. Then specify
in the Table Properties that the row should not break across pages. See
Prevent rows from breaking across pages, page 2-39.

2-40 Oracle XML Publisher User’s Guide

This template will produce the following multicolumn output:

Background and Watermark Support
XML Publisher supports the "Background" feature in Microsoft Word. You can specify a
single, graduated color or an image background for your template to be displayed in the
PDF output. Note that this feature is supported for PDF output only.

To add a background to your template, use the Format > Background menu option.

Add a Background Using Microsoft Word 2000
From the Background pop up menu, you can:

• Select a single color background from the color palette

• Select Fill Effects to open the Fill Effects dialog. The Fill Effects dialog is shown
in the following figure:

Creating an RTF Template 2-41

From this dialog select one of the following supported options:

• Gradient - this can be either one or two colors

• Texture - choose one of the textures provided, or load your own

• Pattern - select a pattern and background/foreground colors

• Picture - load a picture to use as a background image

Add a Text or Image Watermark Using Microsoft Word 2002 or later
These versions of Microsoft Word allow you to add either a text or image watermark.

Use the Format > Background > Printed Watermark dialog to select either:

• Picture Watermark - load an image and define how it should be scaled on the
document

• Text Watermark - use the predefined text options or enter your own, then specify the
font, size and how the text should be rendered.

The following figure shows the Printed Watermark dialog completed to display
a text watermark:

2-42 Oracle XML Publisher User’s Guide

Template Features

Page Breaks
To create a page break after the occurrence of a specific element use the
"split-by-page-break" alias. This will cause the report output to insert a hard page break
between every instance of a specific element.

To insert a page break between each occurrence of a group, insert the
"split-by-page-break" form field within the group immediately before the <?end
for-each?> tag that closes the group. In the Help Text of this form field enter the
syntax:

<?split-by-page-break:?>

Example
For the following XML, assume you want to create a page break for each new supplier:

Creating an RTF Template 2-43

<SUPPLIER>
<NAME>My Supplier</NAME>
<INVOICES>
<INVOICE>
<INVNUM>10001-1</INVNUM>
<INVDATE>1-Jan-2005</INVDATE>
<INVAMT>100</INVOICEAMT>
</INVOICE>
<INVOICE>
<INVNUM>10001-2</INVNUM>
<INVDATE>10-Jan-2005</INVDATE>
<INVAMT>200</INVOICEAMT>
</INVOICE>
</INVOICES>
</SUPPLIER>
<SUPPLIER>
<NAME>My Second Supplier</NAME>
<INVOICES>
<INVOICE>
<INVNUM>10001-1</INVNUM>
<INVDATE>11-Jan-2005</INVDATE>
<INVAMT>150</INVOICEAMT>
</INVOICE>

…
In the template sample shown in the following figure, the field called PageBreak contains
the split-by-page-break syntax:

Place the PageBreak field with the <?split-by-page-break:?> syntax immediately
before the <?end for-each?> field. The PageBreak field sits inside the end of the
SUPPLIER loop. This will ensure a page break is inserted before the occurrence of each
new supplier. This method avoids the ejection of an extra page at the end of the group
when using the native Microsoft Word page break after the group.

Initial Page Number
Some reports require that the initial page number be set at a specified number. For
example, monthly reports may be required to continue numbering from month to
month. XML Publisher allows you to set the page number in the template to support this
requirement.

Use the following syntax in your template to set the initial page number:

<?initial-page-number:pagenumber?>
where pagenumber is the XML element or parameter that holds the numeric value.

Example 1 - Set page number from XML data element
If your XML data contains an element to carry the initial page number, for example:

2-44 Oracle XML Publisher User’s Guide

<REPORT>
<PAGESTART>200<\PAGESTART>
....

</REPORT>
Enter the following in your template:

<?initial-page-number:PAGESTART?>

Your initial page number will be the value of the PAGESTART element, which in this
case is 200.

Example 2 - Set page number by passing a parameter value
If you define a parameter called PAGESTART, you can pass the initial value by calling
the parameter.

Enter the following in your template:

<?initial-page-number:$PAGESTART?>

Note: You must first declare the parameter in your template. See
Defining Parameters in Your Template, page 2-74.

Hyperlinks
You can add fixed or dynamic hyperlinks to your template.

• To insert static hyperlinks, use your word processing application’s insert hyperlink
feature.

The following screenshot shows the insertion of a static hyperlink using Microsoft
Word’s Insert Hyperlink dialog box.

Creating an RTF Template 2-45

• If your template includes a data element that contains a hyperlink or part of one, you
can create dynamic hyperlinks at runtime. In the Type the file or Web page name
field of the Insert Hyperlink dialog box, enter the following syntax:

{URL_LINK}

where URL_LINK is the incoming data element name.

If you have a fixed URL that you want to pass parameters to, enter the following
syntax:

http://www.oracle.com?product={PRODUCT_NAME}

where PRODUCT_NAME is the incoming data element name.

In both these cases, at runtime the dynamic URL will be constructed.

The following figure shows the insertion of a dynamic hyperlink using Microsoft
Word’s Insert Hyperlink dialog box. The data element SUPPLIER_URL from the
incoming XML file will contain the hyperlink that will be inserted into the report at
runtime.

Table of Contents
XML Publisher supports the table of contents generation feature of the RTF
specification. Follow your word processing application’s procedures for inserting a
table of contents.

XML Publisher also provides the ability to create dynamic section headings in your
document from the XML data. You can then incorporate these into a table of contents.

To create dynamic headings:

2-46 Oracle XML Publisher User’s Guide

1. Enter a placeholder for the heading in the body of the document, and format it as a
"Heading", using your word processing application’s style feature. You cannot use
form fields for this functionality.

For example, you want your report to display a heading for each company
reported. The XML data element tag name is <COMPANY_NAME>. In your
template, enter <?COMPANY_NAME?> where you want the heading to appear. Now
format the text as a Heading.

2. Create a table of contents using your word processing application’s table of contents
feature.

At runtime the TOC placeholders and heading text will be substituted.

Check Boxes
You can include a check box in your template that you can define to display as checked
or unchecked based on a value from the incoming data.

To define a check box in your template:

1. Position the cursor in your template where you want the check box to display, and
select the Check Box Form Field from the Forms tool bar (shown in the following
figure).

2. Right-click the field to open the Check Box Form Field Options dialog.

3. Specify the Default value as either Checked or Not Checked.

4. In the Form Field Help Text dialog, enter the criteria for how the box should
behave. This must be a boolean expression (that is, one that returns a true or false
result).

For example, suppose your XML data contains an element called <population>. You
want the check box to appear checked if the value of <population> is greater than
10,000. Enter the following in the help text field:

<?population>10000?>
This is displayed in the following figure:

Creating an RTF Template 2-47

Note that you do not have to construct an "if" statement. The expression is treated as
an "if" statement.

See the next section for a sample template using a check box.

Drop Down Lists
XML Publisher allows you to use the drop-down form field to create a cross-reference
in your template from your XML data to some other value that you define in the
drop-down form field.

For example, suppose you have the following XML:

2-48 Oracle XML Publisher User’s Guide

countries>
<country>
<name>Chad</name>
<population>7360000</population>
<continentIndex>5</continentIndex>
</country>
<country>
<name>China</name>
<population>1265530000</population>
<continentIndex>1</continentIndex>
</country>
<country>
<name>Chile</name>
<population>14677000</population>
<continentIndex>3</continentIndex>
</country>
. . .
</countries>
Notice that each <country> entry has a <continentindex> entry, which is a numeric
value to represent the continent. Using the drop-down form field, you can create an
index in your template that will cross-reference the <continentindex> value to the
actual continent name. You can then display the name in your published report.

To create the index for the continent example:

1. Position the cursor in your template where you want the value from the drop-down
list to display, and select the Drop-Down Form Field from the Forms tool bar (shown
in the following figure).

2. Right-click the field to display the Drop-Down Form Field Options dialog.

3. Add each value to the Drop-down item field and the click Add to add it to the
Items in drop-down list group. The values will be indexed starting from one for the
first, and so on. For example, the list of continents will be stored as follows:

Index Value

1 Asia

2 North America

3 South America

4 Europe

5 Africa

6 Australia

Creating an RTF Template 2-49

4. Now use the Help Text box to enter the XML element name that will hold the index
for the drop-down field values.

For this example, enter

<?continentIndex?>
The following figure shows the Drop-Down Form Field Options dialogs for this
example:

Using the check box and drop-down list features, you can create a report to display
population data with check boxes to demonstrate figures that reach a certain limit. An
example is shown in the following figure:

The template to create this report is shown in the next figure:

where the fields have the following values:

2-50 Oracle XML Publisher User’s Guide

Field Form Field Entry Description

FE <?for-each:country?> Begins the country repeating group.

China <?name?> Placeholder for the name element.

1,000,000 <?population?> Placeholder for the population element.

(check box) <?population>1000000?> Establishes the condition for the check box. If the
value for the population element is greater than
1,000,000, the check box will display as checked.

Asia <?contintentIndex?> The drop-down form field for the continentIndex
element. See the preceding description for its
contents. At runtime, the value of the XML element
is replaced with the value it is cross-referenced to in
the drop-down form field.

EFE <?end for-each?> Ends the country group.

Conditional Formatting
Conditional formatting occurs when a formatting element appears only when a certain
condition is met. XML Publisher supports the usage of simple "if" statements, as well
as more complex "choose" expressions.

The conditional formatting that you specify can be XSL or XSL:FO code, or you can
specify actual RTF objects such as a table or data. For example, you can specify that if
reported numbers reach a certain threshold, they will display shaded in red. Or, you can
use this feature to hide table columns or rows depending on the incoming XML data.

If Statements
Use an if statement to define a simple condition; for example, if a data field is a specific
value.

1. Insert the following syntax to designate the beginning of the conditional area.

<?if:condition?>

2. Insert the following syntax at the end of the conditional area: <?end if?>.

For example, to set up the Payables Invoice Register to display invoices only when the
Supplier name is "Company A", insert the syntax <?if:VENDOR_NAME=’COMPANY
A’?> before the Supplier field on the template.

Enter the <?end if?> tag after the invoices table.

This example is displayed in the figure below. Note that you can insert the syntax in
form fields, or directly into the template.

Creating an RTF Template 2-51

If Statements in Boilerplate Text
Assume you want to incorporate an "if" statement into the following free-form text:

The program was (not) successful.

You only want the "not" to display if the value of an XML tag called <SUCCESS> equals
"N".

To achieve this requirement, you must use the XML Publisher context command to place
the if statement into the inline sequence rather than into the block (the default placement).

Note: For more information on context commands, see Using Context
Commands, page 2-102.

For example, if you construct the code as follows:

The program was <?if:SUCCESS=’N’?>not<?end if?> successful.
The following undesirable result will occur:

The program was
not
successful.
because XML Publisher applies the instructions to the block by default. To specify that
the if statement should be inserted into the inline sequence, enter the following:

The program was <?if@inlines:SUCCESS=’N’?>not<?end if?>
successful.
This construction will result in the following display:

The program was successful.
If SUCCESS does not equal ’N’;

or

The program was not successful.
If SUCCESS equals ’N’.

2-52 Oracle XML Publisher User’s Guide

If-then-Else Statements
XML Publisher supports the common programming construct "if-then-else". This is
extremely useful when you need to test a condition and conditionally show a result. For
example:

IF X=0 THEN
Y=2
ELSE
Y=3
END IF
You can also nest these statements as follows:

IF X=0 THEN
Y=2
ELSE
IF X=1 THEN
Y=10

ELSE Y=100
END IF
Use the following syntax to construct an if-then-else statement in your RTF template:

<?xdofx:if element_condition then result1 else result2 end if?>
For example, the following statement tests the AMOUNT element value. If the value
is greater than 1000, show the word "Higher"; if it is less than 1000, show the word
"Lower"; if it is equal to 1000, show "Equal":

<?xdofx:if AMOUNT > 1000 then ’Higher’
else
if AMOUNT < 1000 then ’Lower’
else
’Equal’

end if?>

Choose Statements
Use the choose, when, and otherwise elements to express multiple conditional
tests. If certain conditions are met in the incoming XML data then specific sections of
the template will be rendered. This is a very powerful feature of the RTF template. In
regular XSL programming, if a condition is met in the choose command then further
XSL code is executed. In the template, however, you can actually use visual widgets in
the conditional flow (in the following example, a table).

Use the following syntax for these elements:

<?choose:?>

<?when:expression?>

<?otherwise?>

"Choose" Conditional Formatting Example
This example shows a choose expression in which the display of a row of data
depends on the value of the fields EXEMPT_FLAG and POSTED_FLAG. When the
EXEMPT_FLAG equals "^", the row of data will render light gray. When POSTED_FLAG
equals "*" the row of data will render shaded dark gray. Otherwise, the row of data will
render with no shading.

Creating an RTF Template 2-53

In the following figure, the form field default text is displayed. The form field help text
entries are shown in the table following the example.

Default Text Entry in Example Form Field Help Text Entry in Form Field

<Grp:VAT <?for-each:VAT?>

<Choose <?choose?>

<When EXEMPT_FLAG=’^’ <?When EXEMPT_FLAG=’^’?>

End When> <?end When?>

<When EXEMPT_FLAG=’^’ <?When EXEMPT_FLAG=’^’?>

End When> <?end When?>

2-54 Oracle XML Publisher User’s Guide

Column Formatting
You can conditionally show and hide columns of data in your document output. The
following example demonstrates how to set up a table so that a column is only displayed
based on the value of an element attribute.

This example will show a report of a price list, represented by the following XML:

<items type="PUBLIC"> <! - can be marked ‘PRIVATE’ - >
<item>
<name>Plasma TV</name>
<quantity>10</quantity>
<price>4000</price>
</item>
<item>
<name>DVD Player</name>
<quantity>3</quantity>
<price>300</price>
</item>
<item>
<name>VCR</name>
<quantity>20</quantity>
<price>200</price>
</item>
<item>
<name>Receiver</name>
<quantity>22</quantity>
<price>350</price>
</item>
</items>
Notice the type attribute associated with the items element. In this XML it is marked
as "PUBLIC" meaning the list is a public list rather than a "PRIVATE" list. For the "public"
version of the list we do not want to show the quantity column in the output, but we
want to develop only one template for both versions based on the list type.

The following figure is a simple template that will conditionally show or hide the
quantity column:

The following table shows the entries made in the template for the example:

Creating an RTF Template 2-55

Default Text Form Field Entry Description

grp:Item <?for-each:item?> Holds the opening for-each loop for
the item element.

Plasma TV <?name?> The placeholder for the name
element from the XML file.

IF <?if@column: /items/@type=
"PRIVATE"?>

The opening of the if statement to test
for the attribute value "PRIVATE".
Note that this syntax uses an XPath
expression to navigate back to the
"items" level of the XML to test the
attribute. For more information about
using XPath in your templates, see
XPath Overview, page 2-99.

Quantity N/A Boilerplate heading

end-if <?end if?> Ends the if statement.

20 <?if@column: /items/@type=
"PRIVATE"?><?quantity?><?
end if?>

The placeholder for the quantity
element surrounded by the "if"
statement.

1,000.00 <?price?> The placeholder for the price
element.

end grp <?end for-each?> Closing tag of the for-each loop.

The conditional column syntax is the "if" statement syntax with the addition of the
@column clause. It is the @column clause that instructs XML Publisher to hide or show
the column based on the outcome of the if statement.

If you did not include the @column the data would not display in your report as a result
of the if statement, but the column still would because you had drawn it in your template.

Note: The @column clause is an example of a context command. For
more information, see Using Context Commands, page 2-102.

The example will render the output shown in the following figure:

If the same XML data contained the type attribute set to "PRIVATE" the following output
would be rendered from the same template:

2-56 Oracle XML Publisher User’s Guide

Row Formatting
XML Publisher allows you to specify formatting conditions as the row-level of a
table. Examples of row-level formatting are:

• Highlighting a row when the data meets a certain threshold.

• Alternating background colors of rows to ease readability of reports.

• Showing only rows that meet a specific condition.

Conditionally Displaying a Row
To display only rows that meet a certain condition, insert the <?if:condition?> <?end if?>
tags at the beginning and end of the row, within the for-each tags for the group. This is
demonstrated in the following sample template.

Note the following fields from the sample figure:

Default Text Entry Form Field Help Text Description

for-each SALE <?for-each:SALE?> Opens the for-each loop to repeat the
data belonging to the SALE group.

if big <?if:SALES>5000?> If statement to display the row only
if the element SALES has a value
greater than 5000.

INDUSTRY <?INDUSTRY?> Data field

YEAR <?YEAR?> Data field

MONTH <?MONTH?> Data field

SALES end if <?end if?> Closes the if statement.

end SALE <?end for-each?> Closes the SALE loop.

Conditionally Highlighting a Row
This example demonstrates how to set a background color on every other row. The
template to create this effect is shown in the following figure:

Creating an RTF Template 2-57

The following table shows values of the form fields in the template:

Default Text Entry Form Field Help Text Description

for-each SALE <?for-each:SALE?> Defines the opening of the for-each loop for
the SALE group.

format; <?if@row:position() mod 2=0?>
<xsl:attribute name="background-color"
xdofo:ctx="incontext">lightgray</xsl:
attribute><?end if?>

For each alternate row, the background
color attribute is set to gray for the row.

INDUSTRY <?INDUSTRY?> Data field

YEAR <?YEAR?> Data field

MONTH <?MONTH?> Data field

SALES <?SALES?> Data field

end SALE <?end for-each?> Closes the SALE for-each loop.

In the preceding example, note the "format;" field. It contains an if statement with a
"row" context (@row). This sets the context of the if statement to apply to the current
row. If the condition is true, then the <xsl:attribute> for the background color of the row
will be set to lightgray. This will result in the following output:

Note: For more information about context commands, see Using Context
Commands., page 2-102

Cell Highlighting
The following example demonstrates how to conditionally highlight a cell based on
a value in the XML file.

For this example we will use the following XML:

2-58 Oracle XML Publisher User’s Guide

<accounts>
<account>
<number>1-100-3333</number>
<debit>100</debit>
<credit>300</credit>
</account>
<account>
<number>1-101-3533</number>
<debit>220</debit>
<credit>30</credit>
</account>
<account>
<number>1-130-3343</number>
<debit>240</debit>
<credit>1100</credit>
</account>
<account>
<number>1-153-3033</number>
<debit>3000</debit>
<credit>300</credit>
</account>
</accounts>
The template lists the accounts and their credit and debit values. In the final report we
want to highlight in red any cell whose value is greater than 1000. The template for this
is shown in the following graphic:

The field definitions for the template are shown in the following table:

Default Text Entry Form Field Entry Description

FE:Account <?for-each:account?> Opens the for each-loop for the
element account.

1-232-4444 <?number?> The placeholder for the number
element from the XML file.

CH1 <?if:debit>1000?><xsl:
attribute xdofo:ctx=
"block" name="background-
color">red</xsl:
attribute><?end if?>

This field holds the code to highlight
the cell red if the debit amount is
greater than 1000.

100.00 <?debit?> The placeholder for the debit
element.

CH2 <?if:credit>1000?
><xsl:attribute xdofo:
ctx="block" name=
"background-color">red</
xsl:attribute><?end if?>

This field holds the code to highlight
the cell red if the credit amount is
greater than 1000.

100.00 <?credit?> The placeholder for the credit
element.

EFE <?end for-each?> Closes the for-each loop.

Creating an RTF Template 2-59

The code to highlight the debit column as shown in the table is:

<?if:debit>1000?>
<xsl:attribute
xdofo:ctx="block" name="background-color">red
</xsl:attribute>

<?end if?>
The "if" statement is testing if the debit value is greater than 1000. If it is, then the
next lines are invoked. Notice that the example embeds native XSL code inside the
"if" statement.

The "attribute" element allows you to modify properties in the XSL.

The xdo:ctx component is an XML Publisher feature that allows you to adjust XSL
attributes at any level in the template. In this case, the background color attribute
is changed to red.

To change the color attribute, you can use either the standard HTML names (for
example, red, white, green) or you can use the hexadecimal color definition (for
example, #FFFFF).

The output from this template is displayed in the following figure:

Page-Level Calculations

Displaying Page Totals
XML Publisher allows you to display calculated page totals in your report. Because the
page is not created until publishing time, the totaling function must be executed by the
formatting engine.

Note: Page totaling is performed in the PDF-formatting layer. Therefore
this feature is not available for other outputs types: HTML, RTF, Excel.

Because the page total field does not exist in the XML input data, you must define a
variable to hold the value. When you define the variable, you associate it with the
element from the XML file that is to be totaled for the page. Once you define total
fields, you can also perform additional functions on the data in those fields.

To declare the variable that is to hold your page total, insert the following syntax
immediately following the placeholder for the element that is to be totaled:

<?add-page-total:TotalFieldName;’element’?>
where

TotalFieldName is the name you assign to your total (to reference later) and

’element’ is the XML element field to be totaled.

You can add this syntax to as many fields as you want to total.

Then when you want to display the total field, enter the following syntax:

2-60 Oracle XML Publisher User’s Guide

<?show-page-total:TotalFieldName;’number-format’?>
where

TotalFieldName is the name you assigned to give the page total field above and

number-format is the format you wish to use to for the display.

The following example shows how to set up page total fields in a template to display
total credits and debits that have displayed on the page, and then calculate the net of
the two fields.

This example uses the following XML:

<balance_sheet>
<transaction>
<debit>100</debit>
<credit>90</credit>
</transaction>
<transaction>
<debit>110</debit>
<credit>80</credit>
</transaction>
…
<\balance_sheet>
The following figure shows the table to insert in the template to hold the values:

The following table shows the form field entries made in the template for the example
table:

Creating an RTF Template 2-61

Default Text Entry Form Field Help Text Entry Description

FE <?for-each:transaction?> This field defines the opening
"for-each" loop for the transaction
group.

100.00 <?debit?><?add-page-total:
dt;’debit’?>

This field is the placeholder for
the debit element from the XML
file. Because we want to total this field
by page, the page total declaration
syntax is added. The field defined to
hold the total for the debit element
is dt.

90.00 <?credit?> <?add-page-
total:ct;’credit’?>

This field is the placeholder for the
credit element from the XML
file. Because we want to total this field
by page, the page total declaration
syntax is added. The field defined to
hold the total for the credit element
is ct.

Net <add-page-total:net;’debit
- credit’?>

Creates a net page total by subtracting
the credit values from the debit
values.

EFE <?end for-each?> Closes the for-each loop.

Note that on the field defined as "net" we are actually carrying out a calculation on the
values of the credit and debit elements.

Now that you have declared the page total fields, you can insert a field in your template
where you want the page totals to appear. Reference the calculated fields using the
names you supplied (in the example, ct and dt). The syntax to display the page totals
is as follows:

For example, to display the debit page total, you could enter the following:

<?show-page-total:dt;$#,##0.00; ($#,##0.00)’?>

Therefore to complete the example, place the following at the bottom of the template
page, or in the footer:

Page Total Debit: <?show-page-total:dt;$#,##0.00; ($#,##0.00)’?>

Page Total Credit: <?show-page-total:ct;$#,##0.00; ($#,##0.00)’?>

Page Total Balance: <?show-page-total:net;$#,##0.00; ($#,##0.00)’?>

The output for this report is shown in the following graphic:

2-62 Oracle XML Publisher User’s Guide

Note that this page totaling function will only work if your source XML has raw numeric
values. The numbers must not be preformatted.

Brought Forward/Carried Forward Totals
Many reports require that a page total be maintained throughout the report output and
be displayed at the beginning and end of each page. These totals are known as "brought
forward/carried forward" totals.

Note: The totaling for the brought forward and carried forward fields
is performed in the PDF-formatting layer. Therefore this feature is not
available for other outputs types: HTML, RTF, Excel.

An example is displayed in the following figure:

At the end of the first page, the page total for the Amount element is displayed as the
Carried Forward total. At the top of the second page, this value is displayed as the
Brought Forward total from the previous page. At the bottom of the second page, the
brought forward value plus the total for that page is calculated and displayed as the new
Carried Forward value, and this continues throughout the report.

This functionality is an extension of the Page Totals, page 2-60 feature. The following
example walks through the syntax and setup required to display the brought forward
and carried forward totals in your published report.

Assume you have the following XML:

Creating an RTF Template 2-63

<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICES>
<INVOICE>
<INVNUM>10001-1</INVNUM>
<INVDATE>1-Jan-2005</INVDATE>
<INVAMT>100</INVOICEAMT>
</INVOICE>
<INVOICE>
<INVNUM>10001-2</INVNUM>
<INVDATE>10-Jan-2005</INVDATE>
<INVAMT>200</INVOICEAMT>
</INVOICE>
<INVOICE>
<INVNUM>10001-1</INVNUM>
<INVDATE>11-Jan-2005</INVDATE>
<INVAMT>150</INVOICEAMT>
</INVOICE>
. . .
</INVOICES>
The following sample template creates the invoice table and declares a placeholder
that will hold your page total:

The fields in the template have the following values:

Field Form Field Help Text Entry Description

Init PTs <?init-page-total: InvAmt?> Declares "InvAmt" as the placeholder that
will hold the page total.

FE <?for-each:INVOICE?> Begins the INVOICE group.

10001-1 <?INVNUM?> Placeholder for the Invoice Number tag.

1-Jan-2005 <?INVDATE?> Placeholder for the Invoice Date tag.

100.00 <?INVAMT?> Placeholder for the Invoice Amount tag.

InvAmt <?add-page-total:InvAmt;INVAMT?> Assigns the "InvAmt" page total object to
the INVAMT element in the data.

EFE <?end for-each?> Closes the INVOICE group.

End PTs <?end-page-total:InvAmt?> Closes the "InvAmt" page total.

To display the brought forward total at the top of each page (except the first), use the
following syntax:

2-64 Oracle XML Publisher User’s Guide

<xdofo:inline-total
display-condition="exceptfirst"
name="InvAmt">
Brought Forward:

<xdofo:show-brought-forward
name="InvAmt"
format="99G999G999D00"/>

</xdofo:inline-total>
The following table describes the elements comprising the brought forward syntax:

Code Element Description and Usage

inline-total This element has two properties:

• name - name of the variable you declared for the field.

• display-condition - sets the display condition. This is an
optional property that takes one of the following values:

• first - the contents appear only on the first page

• last - the contents appear only on the last page

• exceptfirst - contents appear on all pages except first

• exceptlast - contents appear on all pages except last

• everytime - (default) contents appear on every page

In this example, display-condition is set to "exceptfirst" to
prevent the value from appearing on the first page where the
value would be zero.

Brought Forward: This string is optional and will display as the field name on the report.

show-brought-forward Shows the value on the page. It has the following two properties:

• name - the name of the field to show. In this case, "InvAmt". This
property is mandatory.

• format - the Oracle number format to apply to the value at
runtime. This property is optional. For more information about
number formats, see Number and Date Formatting, page 2-85.

Insert the brought forward object at the top of the template where you want the brought
forward total to display. If you place it in the body of the template, you can insert the
syntax in a form field.

If you want the brought forward total to display in the header, you must insert the
full code string into the header because Microsoft Word does not support form fields
in the header or footer regions. However, you can alternatively use the start body/end
body syntax which allows you to define what the body area of the report will be. XML
Publisher will recognize any content above the defined body area as header content, and
any content below as the footer. This allows you to use form fields. See Multiple or
Complex Headers and Footers, page 2-13 for details.

Place the carried forward object at the bottom of your template where you want the total
to display. The carried forward object for our example is as follows:

Creating an RTF Template 2-65

<xdofo:inline-total
display-condition="exceptlast"
name="InvAmt">
Carried Forward:

<xdofo:show-carry-forward
name="InvAmt"
format="99G999G999D00"/>

</xdofo:inline-total>
Note the following differences with the brought-forward object:

• The display-condition is set to exceptlast so that the carried forward total
will display on every page except the last page.

• The display string is "Carried Forward".

• The show-carry-forward element is used to show the carried forward value. It
has the same properties as brought-carried-forward, described above.

You are not limited to a single value in your template, you can create multiple brought
forward/carried forward objects in your template pointing to various numeric elements
in your data.

Running Totals
Example
The variable functionality (see Using Variables, page 2-74) can be used to add a running
total to your invoice listing report. This example assumes the following XML structure:

<?xml version="1.0" encoding="WINDOWS-1252"?>
<INVOICES>
<INVOICE>
<INVNUM>10001-1</INVNUM>
<INVDATE>1-Jan-2005</INVDATE>
<INVAMT>100</INVOICEAMT>
</INVOICE>
<INVOICE>
<INVNUM>10001-2</INVNUM>
<INVDATE>10-Jan-2005</INVDATE>
<INVAMT>200</INVOICEAMT>
</INVOICE>
<INVOICE>
<INVNUM>10001-1</INVNUM>
<INVDATE>11-Jan-2005</INVDATE>
<INVAMT>150</INVOICEAMT>
</INVOICE>
</INVOICES>
Using this XML, we want to create the report that contains running totals as shown
in the following figure:

2-66 Oracle XML Publisher User’s Guide

To create the Running Total field, define a variable to track the total and initialize it to
0. The template is shown in the following figure:

The values for the form fields in the template are shown in the following table:

Form Field Syntax Description

RtotalVar <?xdoxslt:set_variable($_
XDOCTX, ’RTotalVar’, 0)?>

Declares the "RTotalVar"
variable and initializes it to 0.

FE <?for-each:INVOICE?> Starts the Invoice group.

10001-1 <?INVNUM?> Invoice Number tag

1-Jan-2005 <?INVDATE?> Invoice Date tag

100.00 <?xdoxslt:set_variable($_
XDOCTX, ’RTotalVar’, xdoxslt:
get_variable($_XDOCTX,
’RTotalVar’) + INVAMT)?>
xdoxslt:get_variable($_
XDOCTX, ’RTotalVar’)?>

Sets the value of RTotalVar to
the current value plus the new
Invoice Amount.
Retrieves the RTotalVar value
for display.

EFE <?end for-each?> Ends the INVOICE group.

Data Handling

Sorting
You can sort a group by any element within the group. Insert the following syntax
within the group tags:

<?sort:element name?>

For example, to sort the Payables Invoice Register (shown at the beginning
of this chapter) by Supplier (VENDOR_NAME), enter the following after the
<?for-each:G_VENDOR_NAME?> tag:

<?sort:VENDOR_NAME?>

To sort a group by multiple fields, just insert the sort syntax after the primary sort
field. To sort by Supplier and then by Invoice Number, enter the following

<?sort:VENDOR_NAME?> <?sort:INVOICE_NUM?>

Regrouping the XML Data
The RTF template supports the XSL 2.0 for-each-group standard that allows you to
regroup XML data into hierarchies that are not present in the original data. With this
feature, your template does not have to follow the hierarchy of the source XML file. You
are therefore no longer limited by the structure of your data source.

Creating an RTF Template 2-67

XML Sample
To demonstrate the for-each-group standard, the following XML data sample of a CD
catalog listing will be regrouped in a template:

<CATALOG>
<CD>

<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Columbia</COMPANY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>

</CD>
<CD>

<TITLE>Hide Your Heart</TITLE>
<ARTIST>Bonnie Tylor</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>CBS Records</COMPANY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>

</CD>
<CD>

<TITLE>Still got the blues</TITLE>
<ARTIST>Gary More</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Virgin Records</COMPANY>
<PRICE>10.20</PRICE>
<YEAR>1990</YEAR>

</CD>
<CD>

<TITLE>This is US</TITLE>
<ARTIST>Gary Lee</ARTIST>
<COUNTRY>UK</COUNTRY>
<COMPANY>Virgin Records</COMPANY>
<PRICE>12.20</PRICE>
<YEAR>1990</YEAR>

</CD>
Using the regrouping syntax, you can create a report of this data that groups the CDs by
country and then by year. You are not limited by the data structure presented.

Regrouping Syntax
To regroup the data, use the following syntax:

<?for-each-group: BASE-GROUP;GROUPING-ELEMENT?>
For example, to regroup the CD listing by COUNTRY, enter the following in your
template:

<?for-each-group:CD;COUNTRY?>
The elements that were at the same hierarchy level as COUNTRY are now children of
COUNTRY. You can then refer to the elements of the group to display the values desired.

To establish nested groupings within the already defined group, use the following syntax:

<?for-each:current-group(); GROUPING-ELEMENT?>
For example, after declaring the CD grouping by COUNTRY, you can then further group
by YEAR within COUNTRY as follows:

<?for-each:current-group();YEAR?>

2-68 Oracle XML Publisher User’s Guide

At runtime, XML Publisher will loop through the occurrences of the new
groupings, displaying the fields that you defined in your template.

Note: This syntax is a simplification of the XSL for-each-group syntax. If
you choose not to use the simplified syntax above, you can use the XSL
syntax as shown below. The XSL syntax can only be used within a form
field of the template.

<xsl:for-each-group
select=expression
group-by="string expression"
group-adjacent="string expression"
group-starting-with=pattern>
<!--Content: (xsl:sort*, content-constructor) -->

</xsl:for-each-group>

Template Example
The following figure shows a template that displays the CDs by Country, then Year, and
lists the details for each CD:

The following table shows the XML Publisher syntax entries made in the form fields of
the preceding template:

Creating an RTF Template 2-69

Default Text Entry Form Field Help Text Entry Description

Group by Country <?for-each-group:
CD;COUNTRY?>

The <?for-each-group:
CD;COUNTRY?> tag declares
the new group. It regroups
the existing CD group by the
COUNTRY element.

USA <?COUNTRY?> Placeholder to display the data
value of the COUNTRY tag.

Group by Year <?for-each-group:
current-group();YEAR?>

The <?for-each-group:
current-group();YEAR?>
tag regroups the current group
(that is, COUNTRY), by the
YEAR element.

2000 <?YEAR?> Placeholder to display the data
value of the YEAR tag.

Group: Details <?for-each:current-
group()?>

Once the data is grouped by
COUNTRY and then by YEAR,
the <?for-each:current-
group()?> command is used
to loop through the elements
of the current group (that
is, YEAR) and render the data
values (TITLE, ARTIST, and
PRICE) in the table.

My CD <?TITLE?> Placeholder to display the data
value of the TITLE tag.

John Doe <?ARTIST?> Placeholder to display the data
value of the ARTIST tag.

1.00 <?PRICE?> Placeholder to display the data
value of the PRICE tag.

End Group <?end for-each?> Closes out the <?for-each:
current-group()?> tag.

End Group by Year <?end for-each-group?> Closes out the <?for-
each-group:current-
group();YEAR?> tag.

End Group by Country <?end for-each-group?> Closes out the
<?for-each-group:
CD;COUNTRY?> tag.

This template produces the following output when merged with the XML file:

2-70 Oracle XML Publisher User’s Guide

Regrouping by an Expression
Regrouping by an expression allows you to apply a function or command to a data
element, and then group the data by the returned result.

To use this feature, state the expression within the regrouping syntax as follows:

<?for-each:BASE-GROUP; GROUPING-EXPRESSION?>
Example
To demonstrate this feature, an XML data sample that simply contains average
temperatures per month will be used as input to a template that calculates the number of
months having an average temperature within a certain range.

The following XML sample is composed of <temp> groups. Each <temp> group
contains a <month> element and a <degree> element, which contains the average
temperature for that month:

Creating an RTF Template 2-71

<temps>
<temp>
<month>Jan</month>
<degree>11</degree>

</temp>
<temp>
<month>Feb</month>
<degree>14</degree>

</temp>
<temp>
<month>Mar</month>
<degree>16</degree>

</temp>
<temp>
<month>Apr</month>
<degree>20</degree>

</temp>
<temp>
<month>May</month>
<degree>31</degree>

</temp>
<temp>
<month>Jun</month>
<degree>34</degree>

</temp>
<temp>
<month>Jul</month>
<degree>39</degree>

</temp>
<temp>
<month>Aug</month>
<degree>38</degree>

</temp>
<temp>
<month>Sep</month>
<degree>24</degree>

</temp>
<temp>
<month>Oct</month>
<degree>28</degree>

</temp>
<temp>
<month>Nov</month>
<degree>18</degree>

</temp>
<temp>
<month>Dec</month>
<degree>8</degree>

</temp>
</temps>
You want to display this data in a format showing temperature ranges and a count of the
months that have an average temperature to satisfy those ranges, as follows:

2-72 Oracle XML Publisher User’s Guide

Using the for-each-group command you can apply an expression to the <degree>
element that will enable you to group the temperatures by increments of 10 degrees. You
can then display a count of the members of each grouping, which will be the number of
months having an average temperature that falls within each range.

The template to create the above report is shown in the following figure:

The following table shows the form field entries made in the template:

Default Text Entry Form Field Help Text Entry

Group by TmpRng <?for-each-group:temp;floor(degree
div 10?>

<?sort:floor(degree div 10)?>

Range <?concat(floor(degree div 10)*10,’
F to ’,floor(degree div 10)*10+10,
F’)?>

Months <?count(current-group())?>

End TmpRng <?end for-each-group?>

Note the following about the form field tags:

• The <?for-each-group:temp;floor(degree div 10)?> is the regrouping
tag. It specifies that for the existing <temp> group, the elements are to be regrouped
by the expression, floor(degree div 10). The floor function is an XSL
function that returns the highest integer that is not greater than the argument (for
example, 1.2 returns 1, 0.8 returns 0).

In this case, it returns the value of the <degree> element, which is then
divided by 10. This will generate the following values from the XML
data: 1, 1, 1, 2, 3, 3, 3, 3, 2, 2, 1, and 0.

Creating an RTF Template 2-73

These are sorted, so that when processed, the following four groups will be
created: 0, 1, 2, and 3.

• The <?concat(floor(degree div 10)*10,’F to ’, floor(degree
div 10)*10+10,’F’?> displays the temperature ranges in the row header in
increments of 10. The expression concatenates the value of the current group times
10 with the value of the current group times 10 plus 10.

Therefore, for the first group, 0, the row heading displays 0 to (0 +10), or "0 F to 10 F".

• The <?count(current-group())?> uses the count function to count the
members of the current group (the number of temperatures that satisfy the range).

• The <?end for-each-group?> tag closes out the grouping.

Variables, Parameters, and Properties

Using Variables
Updateable variables differ from standard XSL variables <xsl:variable> in that they are
updateable during the template application to the XML data. This allows you to create
many new features in your templates that require updateable variables.

The variables use a "set and get" approach for assigning, updating, and retrieving values.

Use the following syntax to declare/set a variable value:

<?xdoxslt:set_variable($_XDOCTX, ’variable name’, value)?>
Use the following syntax to retrieve a variable value:

<?xdoxslt:get_variable($_XDOCTX, ’variable name’)?>
You can use this method to perform calculations. For example:

<?xdoxslt:set_variable($_XDOCTX, ’x’, xdoxslt:get_variable($_XDOC
TX, ’x’ + 1)?>
This sets the value of variable ’x’ to its original value plus 1, much like using "x = x
+ 1".

The $_XDOCTX specifies the global document context for the variables. In a
multi-threaded environment there may be many transformations occurring at the same
time, therefore the variable must be assigned to a single transformation.

See the section on Running Totals, page 2-66 for an example of the usage of updateable
variables.

Dening Parameters
You can pass runtime parameter values into your template. These can then be referenced
throughout the template to support many functions. For example, you can filter data in
the template, use a value in a conditional formatting block, or pass property values (such
as security settings) into the final document.

Note: The Oracle Applications concurrent manager does not support
passing parameter values into the template. The parameters must be
passed programmatically using the APIs as described below.

Using a parameter in a template
1. Declare the parameter in the template.

2-74 Oracle XML Publisher User’s Guide

Use the following syntax to declare the parameter:

<xsl:param name="PARAMETERNAME" select="DEFAULT" xdofo:ctx="begin"/>
where

PARAMETERNAME is the name of the parameter

DEFAULT is the default value for the parameter (the select statement is optional)

xdofo:ctx="begin" is a required string to push the parameter declaration to the
top of the template at runtime so that it can be referred to globally in the template.

The syntax must be declared in the Help Text field of a form field. The form field
can be placed anywhere in the template.

2. Refer to the parameter in the template by prefixing the name with a "$" character. For
example, if you declare the parameter name to be "InvThresh", then reference the
value using "$InvThresh".

3. At runtime, pass the parameter to the XML Publisher engine programmatically.

Prior to calling either the FOProcessor API (Core) or the TemplateHelper API
(E-Business Suite) create a Properties class and assign a property to it for the
parameter value as follows:

Properties prop = new Properties();
prop.put("xslt.InvThresh", "1000");
For more information, see Calling XML Publisher APIs, page 10-1.

Example: Passing an invoice threshold parameter
This example illustrates how to declare a parameter in your template that will filter your
data based on the value of the parameter.

The following XML sample lists invoice data:

<INVOICES>
<INVOICE>
<INVOICE_NUM>981110</INVOICE_NUM>
<AMOUNT>1100</AMOUNT>
</INVOICE>
<INVOICE>
<INVOICE_NUM>981111</INVOICE_NUM>
<AMOUNT>250</AMOUNT>
</INVOICE>
<INVOICE>
<INVOICE_NUM>981112</INVOICE_NUM>
<AMOUNT>8343</AMOUNT>
</INVOICE>
. . .
</INVOICES>
The following figure displays a template that accepts a parameter value to limit the
invoices displayed in the final document based on the parameter value.

Creating an RTF Template 2-75

Field Form Field Help Text Entry Description

InvThreshDeclaration <xsl:param name="InvThresh"
xdofo:ctx="begin"/>

Declares the parameter InvThresh.

FE <?for-each:INVOICE?> Begins the repeating group for the INVOICE
element.

IF <?if:AMOUNT>$InvThresh?> Tests the value of the AMOUNT element to
determine if it is greater than the value of
InvThresh.

13222-2 <?INVOICE_NUM?> Placeholder for the INVOICE_NUM element.

$100.00 <?AMOUNT?> Placeholder for the AMOUNT element.

EI <?end if?> Closing tag for the if statement.

EFE <?end for-each?> Closing tag for the for-each loop.

In this template, only INVOICE elements with an AMOUNT greater than the InvThresh
parameter value will be displayed. If we pass in a parameter value of 1,000, the following
output shown in the following figure will result:

Notice the second invoice does not display because its amount was less than the
parameter value.

Setting Properties
XML Publisher properties that are available in the XML Publisher Configuration file can
alternatively be embedded into the RTF template. The properties set in the template are
resolved at runtime by the XML Publisher engine. You can either hard code the values in
the template or embed the values in the incoming XML data. Embedding the properties
in the template avoids the use of the configuration file.

Note: See XML Publisher Configuration File, page 8-2 for more
information about the XML Publisher Configuration file and the
available properties.

For example, if you use a nonstandard font in your template, rather than specify the font
location in the configuration file, you can embed the font property inside the template. If
you need to secure the generated PDF output, you can use the XML Publisher PDF
security properties and obtain the password value from the incoming XML data.

To add an XML Publisher property to a template, use the Microsoft Word Properties
dialog (available from the Filemenu), and enter the following information:

Name - enter the XML Publisher property name prefixed with "xdo-"

2-76 Oracle XML Publisher User’s Guide

Type - select "Text"

Value - enter the property value. To reference an element from the incoming
XML data, enter the path to the XML element enclosed by curly braces. For
example: {/root/password}

The following figure shows the Properties dialog:

Embedding a Font Reference
For this example, suppose you want to use a font in the template called
"XMLPScript". This font is not available as a regular font on your server, therefore you
must tell XML Publisher where to find the font at runtime. You tell XML Publisher
where to find the font by setting the "font" property. Assume the font is located in
"/tmp/fonts", then you would enter the following in the Properties dialog:

Name: xdo-font.XMLPScript.normal.normal

Type: Text

Value: truetype./tmp/fonts/XMLPScript.ttf

When the template is applied to the XML data on the server, XML Publisher will look for
the font in the /tmp/fonts directory. Note that if the template is deployed in multiple
locations, you must ensure that the path is valid for each location.

For more information about setting font properties, see Font Definitions, page A-4.

Creating an RTF Template 2-77

Securing a PDF Output
For this example, suppose you want to use a password from the XML data to secure the
PDF output document. The XML data is as follows:

<PO>
<security>true</security>
<password>welcome</password>
<PO_DETAILS>
..
</PO>

In the Properties dialog set two properties: pdf-security to set the security feature
as enabled or not, and pdf-open-password to set the password. Enter the following
in the Properties dialog:

Name: xdo-pdf-security

Type: Text

Value: {/PO/security}

Name: xdo-pdf-open-password

Type: Text

Value: {/PO/password}

Storing the password in the XML data is not recommended if the XML will persist in
the system for any length of time. To avoid this potential security risk, you can use a
template parameter value that is generated and passed into the template at runtime.

For example, you could set up the following parameters:

• PDFSec - to pass the value for the xdo-pdf-security property

• PDFPWD - to pass the value for the password

You would then enter the following in the Properties dialog:

Name: xdo-pdf-security

Type: Text

Value: {$PDFSec}

Name: xdo-pdf-open-password

Type: Text

Value: {$PDFPWD}

For more information about template parameters, see Defining Parameters in Your
Template, page 2-74.

Advanced Report Layouts

Batch Reports
It is a common requirement to print a batch of documents, such as invoices or purchase
orders in a single PDF file. Because these documents are intended for different
customers, each document will require that the page numbering be reset and that page

2-78 Oracle XML Publisher User’s Guide

totals are specific to the document. If the header and footer display fields from the data
(such as customer name) these will have to be reset as well.

XML Publisher supports this requirement through the use of a context command. This
command allows you to define elements of your report to a specific section. When the
section changes, these elements are reset.

The following example demonstrates how to reset the header and footer and page
numbering within an output file:

The following XML sample is a report that contains multiple invoices:

...
<LIST_G_INVOICE>

<G_INVOICE>
<BILL_CUST_NAME>Vision, Inc. </BILL_CUST_NAME>
<TRX_NUMBER>2345678</TRX_NUMBER>
...

</G_INVOICE>
<G_INVOICE>

<BILL_CUST_NAME>Oracle, Inc. </BILL_CUST_NAME>
<TRX_NUMBER>2345685</TRX_NUMBER>
...

</G_INVOICE>
...

</LIST_G_INVOICE>
...
Each G_INVOICE element contains an invoice for a potentially different customer. To
instruct XML Publisher to start a new section for each occurrence of the G_INVOICE
element, add the @section command to the opening for-each statement for the
group, using the following syntax:

<?for-each@section:group name?>

where group_name is the name of the element for which you want to begin a new
section.

For example, the for-each grouping statement for this example will be as follows:

<?for-each@section:G_INVOICE?>

The closing <?end for-each?> tag is not changed.

The following figure shows a sample template. Note that the G_INVOICE group
for-each declaration is still within the body of the report, even though the headers will be
reset by the command.

Creating an RTF Template 2-79

The following table shows the values of the form fields from the example:

Default Text Entry Form Field Help Text Description

for-each G_INVOICE <?for-each@section:G_INVO
ICE?>

Begins the G_INVOICE group,
and defines the element as a
Section. For each occurrence
of G_INVOICE, a new section
will be started.

<?TRX_NUMBER?> N/A Microsoft Word does not
support form fields in
the header, therefore the
placeholder syntax for the
TRX_NUMBER element is
placed directly in the template.

end G_INVOICE <?end for-each?> Closes the G_INVOICE group.

Now for each new occurrence of the G_INVOICE element, a new section will begin. The
page numbers will restart, and if header or footer information is derived from the data, it
will be reset as well.

Cross-Tab Support
The columns of a cross-tab report are data dependent. At design-time you do not know
how many columns will be reported, or what the appropriate column headings will
be. Moreover, if the columns should break onto a second page, you need to be able to
define the row label columns to repeat onto subsequent pages. The following example
shows how to design a simple cross-tab report that supports these features.

This example uses the following XML sample:

2-80 Oracle XML Publisher User’s Guide

<ROWSET>
<RESULTS>
<INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
<YEAR>2005</YEAR>
<QUARTER>Q1</QUARTER>
<SALES>1000</SALES>

</RESULTS>
<RESULTS>
<INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
<YEAR>2005</YEAR>
<QUARTER>Q2</QUARTER>
<SALES>2000</SALES>

</RESULTS>
<RESULTS>
<INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
<YEAR>2004</YEAR>
<QUARTER>Q1</QUARTER>
<SALES>3000</SALES>

</RESULTS>
<RESULTS>
<INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
<YEAR>2004</YEAR>
<QUARTER>Q2</QUARTER>
<SALES>3000</SALES>

</RESULTS>
<RESULTS>
<INDUSTRY>Motor Vehicle Dealers</INDUSTRY>
<YEAR>2003</YEAR>
...

</RRESULTS>
<RESULTS>
<INDUSTRY>Home Furnishings</INDUSTRY>

...
</RESULTS>
<RESULTS>
<INDUSTRY>Electronics</INDUSTRY>

...
</RESULTS>
<RESULTS>
<INDUSTRY>Food and Beverage</INDUSTRY>

...
</RESULTS>

</ROWSET>
From this XML we will generate a report that shows each industry and totals the sales
by year as shown in the following figure:

Creating an RTF Template 2-81

The template to generate this report is shown in the following figure. The form field
entries are shown in the subsequent table.

The form fields in the template have the following values:

Default Text Entry Form Field Help Text Description

header column <?horizontal-break-table:1?> Defines the first column as a header that should repeat
if the table breaks across pages. For more information
about this syntax, see Defining Columns to Repeat
Across Pages, page 2-83.

for: <?for-each-group@column:
RESULTS;YEAR?>

Uses the regrouping syntax (see Regrouping the XML
Data, page 2-67) to group the data by YEAR; and the
@column context command to create a table column
for each group (YEAR). For more information about
context commands, see Using the Context Commands,
page 2-102.

YEAR <?YEAR?> Placeholder for the YEAR element.

end <?end for-each-group?> Closes the for-each-group loop.

for: <?for-each-group:RESULTS;
INDUSTRY?>

Begins the group to create a table row for each
INDUSTRY.

INDUSTRY <?INDUSTRY?> Placeholder for the INDUSTRY element.

for: <?for-each-group@cell:current-
group();YEAR?>

Uses the regrouping syntax (see Regrouping the XML
Data, page 2-67) to group the data by YEAR; and the
@cell context command to create a table cell for each
group (YEAR).

sum(Sales) <?sum(current-group()//
SALES)

Sums the sales for the current group (YEAR).

end <?end for-each-group?> Closes the for-each-group statement.

end <?end for-each-group?> Closes the for-each-group statement.

Note that only the first row uses the @column context to determine the number of
columns for the table. All remaining rows need to use the @cell context to create the
table cells for the column. (For more information about context commands, see Using the
Context Commands, page 2-102.)

2-82 Oracle XML Publisher User’s Guide

Dynamic Data Columns
The ability to construct dynamic data columns is a very powerful feature of the RTF
template. Using this feature you can design a template that will correctly render a table
when the number of columns required by the data is variable.

For example, you are designing a template to display columns of test scores within
specific ranges. However, you do not how many ranges will have data to report. You can
define a dynamic data column to split into the correct number of columns at runtime.

Use the following tags to accommodate the dynamic formatting required to render
the data correctly:

• Dynamic Column Header

<?split-column-header:group element name?>

Use this tag to define which group to split for the column headers of a table.

• Dynamic Column <?split-column-data:group element name?>

Use this tag to define which group to split for the column data of a table.

• Dynamic Column Width

<?split-column-width:name?> or

<?split-column-width:@width?>

Use one of these tags to define the width of the column when the width is described
in the XML data. The width can be described in two ways:

• An XML element stores the value of the width. In this case, use the syntax
<?split-column-width:name?>, where name is the XML element tag name
that contains the value for the width.

• If the element defined in the split-column-header tag, contains a width
attribute, use the syntax <?split-column-width:@width?> to use the value
of that attribute.

• Dynamic Column Width’s unit value (in points) <?split-column-width-unit:
value?>

Use this tag to define a multiplier for the column width. If your column widths are
defined in character cells, then you will need a multiplier value of ~6 to render the
columns to the correct width in points. If the multiplier is not defined, the widths
of the columns are calculated as a percentage of the total width of the table. This is
illustrated in the following table:

Width Denition Column 1

(Width = 10)

Column 2

(Width = 12)

Column 3

(Width = 14)

Multiplier not present
-% width

10/10+12+14*100 28% %Width = 33% %Width =39%

Multiplier = 6 - width 60 pts 72 pts 84 pts

Dening Columns to Repeat Across Pages
<?horizontal-break-table:number?>

Creating an RTF Template 2-83

If columns exceed one page, this tag allows you to specify how many row heading
columns will repeat on subsequent pages with the continuing columns.

Example of Dynamic Data Columns
A template is required to display test score ranges for school exams. Logically, you want
the report to be arranged as shown in the following table:

Test Score Test Score
Range 1

Test Score
Range 2

Test Score
Range 3

...Test Score
Range n

Test Category # students in
Range 1

students in
Range 2

students in
Range 3

of students in
Range n

but you do not know how many Test Score Ranges will be reported. The number of Test
Score Range columns is dynamic, depending on the data.

The following XML data describes these test scores. The number of occurrences of the
element <TestScoreRange> will determine how many columns are required. In this
case there are five columns: 0-20, 21-40, 41-60, 61-80, and 81-100. For each column there
is an amount element (<NumOfStudents>) and a column width attribute (<TestScore
width="15">).

<?xml version="1.0" encoding="utf-8"?>
<TestScoreTable>
<TestScores>
<TestCategory>Mathematics</TestCategory>
<TestScore width ="15">
<TestScoreRange>0-20</TestScoreRange>
<NumofStudents>30</NumofStudents>

</TestScore>
<TestScore width ="20">
<TestScoreRange>21-40</TestScoreRange>
<NumofStudents>45</NumofStudents>

</TestScore>
<TestScore width ="15">
<TestScoreRange>41-60</TestScoreRange>
<NumofStudents>50</NumofStudents>

</TestScore>
<TestScore width ="20">
<TestScoreRange>61-80</TestScoreRange>
<NumofStudents>102</NumofStudents>

</TestScore>
<TestScore width ="15">
<TestScoreRange>81-100</TestScoreRange>
<NumofStudents>22</NumofStudents>

</TestScore>
</TestScores>
<TestScoreTable>

Using the dynamic column tags in form fields, set up the table in two columns as
shown in the following figure. The first column, "Test Score" is static. The second
column, "Column Header and Splitting" is the dynamic column. At runtime this column
will split according to the data, and the header for each column will be appropriately
populated. The Default Text entry and Form Field Help entry for each field are listed in
the table following the figure. (See Form Field Method, page 2-7 for more information on
using form fields).

2-84 Oracle XML Publisher User’s Guide

Default Text Entry Form Field Help Text Entry

Group:TestScores <?for-each:TestScores?>

Test Category <?TestCategory?>

Column Header and Splitting <?split-column-header:TestScore?> <?split-
column-width:@width?> <?TestScoreRange?>%

Content and Splitting <?split-column-data:TestScore?> <?
NumofStudents?>

end:TestScores <?end for-each?>

• Test Score is the boilerplate column heading.

• Test Category is the placeholder for the <TestCategory> data element, that
is, "Mathematics," which will also be the row heading.

• The second column is the one to be split dynamically. The width you specify will be
divided by the number of columns of data. In this case, there are 5 data columns.

• The second column will contain the dynamic "range" data. The width of the column
will be divided according to the split column width. Because this example does not
contain the unit value tag (<?split-column-width-unit:value?>), the column
will be split on a percentage basis. Wrapping of the data will occur if required.

Note: If the tag (<?split-column-width-unit:value?>) were
present, then the columns would have a specific width in points. If
the total column widths were wider than the allotted space on the
page, then the table would break onto another page.

The "horizontal-break-table" tag could then be used to specify how
many columns to repeat on the subsequent page. For example, a
value of "1" would repeat the column "Test Score" on the subsequent
page, with the continuation of the columns that did not fit on the
first page.

The template will render the output shown in the following figure:

Number and Date Formatting

Number Formatting
XML Publisher supports two methods for specifying the number format:

Creating an RTF Template 2-85

• Microsoft Word’s Native number format mask

• Oracle’s format-number function

Note: You can also use the native XSL format-number function to format
numbers. See: Native XSL Number Formatting, page 2-106.

Use only one of these methods. If the number format mask is specified using both
methods, the data will be formatted twice, causing unexpected behavior.

The group separator and the number separator will be set at runtime based on the
template locale. This is applicable for both the Oracle format mask and the MS format
mask.

Data Source Requirements
To use the Oracle format mask or the Microsoft format mask, the numbers in your data
source must be in a raw format, with no formatting applied (for example: 1000.00). If the
number has been formatted for European countries (for example: 1.000,00) the format
will not work.

Note: The XML Publisher parser requires the Java BigDecimal string
representation. This consists of an optional sign ("-") followed by
a sequence of zero or more decimal digits (the integer), optionally
followed by a fraction, and optionally followed by an exponent. For
example: -123456.3455e-3.

Translation Considerations
If you are designing a template to be translatable, using currency in the Microsoft format
mask is not recommended unless you want the data reported in the same currency for
all translations. Using the MS format mask sets the currency in the template so that it
cannot be updated at runtime.

Instead, use the Oracle format mask. For example, L999G999G999D99, where "L" will be
replaced by the currency symbol based on the locale at runtime.

Do not include "%" in the format mask because this will fix the location of the percent
sign in the number display, while the desired position could be at the beginning or the
end of a number, depending on the locale.

Using the Microsoft Number Format Mask
To format numeric values, use Microsoft Word’s field formatting features available from
the Text Form Field Options dialog box. The following graphic displays an example:

2-86 Oracle XML Publisher User’s Guide

To apply a number format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Number.

3. Select the appropriate Number format from the list of options.

Supported Microsoft Format Mask Denitions
The following table lists the supported Microsoft format mask definitions:

Creating an RTF Template 2-87

Symbol Location Meaning

0 Number Digit. Each explicitly set 0 will appear, if no other number occupies
the position.
Example:
Format mask: 00.0000
Data: 1.234
Display: 01.2340

Number Digit. When set to #, only the incoming data is displayed.
Example:
Format mask: ##.####
Data: 1.234
Display: 1.234

. Number Determines the position of the decimal separator. The decimal
separator symbol used will be determined at runtime based on
template locale.
For example:
Format mask: #,##0.00
Data: 1234.56
Display for English locale: 1,234.56
Display for German locale: 1.234,56

- Number Determines placement of minus sign for negative numbers.

, Number Determines the placement of the grouping separator. The grouping
separator symbol used will be determined at runtime based on
template locale.
For example:
Format mask: #,##0.00
Data: 1234.56
Display for English locale: 1,234.56
Display for German locale: 1.234,56

E Number Separates mantissa and exponent in a scientific notation.
Example:
0.###E+0 plus sign always shown for positive numbers
0.###E-0 plus sign not shown for positive numbers

; Subpattern boundary Separates positive and negative subpatterns. See Note below.

% Prefix or Suffix Multiply by 100 and show as percentage

’ Prefix or Suffix Used to quote special characters in a prefix or suffix.

Note: Subpattern boundary: A pattern contains a positive and negative
subpattern, for example, "#,##0.00;(#,##0.00)". Each subpattern has a
prefix, numeric part, and suffix. The negative subpattern is optional. If
absent, the positive subpattern prefixed with the localized minus sign
("-" in most locales) is used as the negative subpattern. That is, "0.00"

2-88 Oracle XML Publisher User’s Guide

alone is equivalent to "0.00;-0.00". If there is an explicit negative
subpattern, it serves only to specify the negative prefix and suffix. The
number of digits, minimal digits, and other characteristics are all the
same as the positive pattern. That means that "#,##0.0#;(#)" produces
precisely the same behavior as "#,##0.0#;(#,##0.0#)".

Using the Oracle Format Mask
To apply the Oracle format mask to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to "Regular text".

3. In the Form Field Help Text field, enter the mask definition according to the
following example:

<?format-number:fieldname;’999G999D99’?>

where

fieldname is the XML tag name of the data element you are formatting and

999G999D99 is the mask definition.

The following graphic shows an example Form Field Help Text dialog entry for the
data element "empno":

The following table lists the supported Oracle number format mask symbols and their
definitions:

Creating an RTF Template 2-89

Symbol Meaning

0 Digit. Each explicitly set 0 will appear, if no other number occupies the position.
Example:
Format mask: 00.0000
Data: 1.234
Display: 01.2340

9 Digit. Returns value with the specified number of digits with a leading space if positive or a
leading minus if negative. Leading zeros are blank, except for a zero value, which returns a
zero for the integer part of the fixed-point number.
Example:
Format mask: 99.9999
Data: 1.234
Display: 1.234

C Returns the ISO currency symbol in the specified position.

D Determines the placement of the decimal separator. The decimal separator symbol used will
be determined at runtime based on template locale.
For example:
Format mask: 9G999D99
Data: 1234.56
Display for English locale: 1,234.56
Display for German locale: 1.234,56

EEEE Returns a value in scientific notation.

G Determines the placement of the grouping (thousands) separator. The grouping separator
symbol used will be determined at runtime based on template locale.
For example:
Format mask: 9G999D99
Data: 1234.56
Display for English locale: 1,234.56
Display for German locale: 1.234,56

L Returns the local currency symbol in the specified position.

MI Displays negative value with a trailing "-".

PR Displays negative value enclosed by <>

PT Displays negative value enclosed by ()

S (before number) Displays positive value with a leading "+" and negative values with a leading "-"

S (after number) Displays positive value with a trailing "+" and negative value with a trailing "-"

Date Formatting
XML Publisher supports three methods for specifying the date format:

• Specify an explicit date format mask usingMicrosoft Word’s native date format mask.

2-90 Oracle XML Publisher User’s Guide

• Specify an explicit date format mask using Oracle’s format-date function.

• Specify an abstract date format mask using Oracle’s abstract date format
masks. (Recommended for multilingual templates.)

Only one method should be used. If both the Oracle and MS format masks are
specified, the data will be formatted twice causing unexpected behavior.

Data Source Requirements
To use the Microsoft format mask or the Oracle format mask, the date from the XML
data source must be in canonical format. This format is:

YYYY-MM-DDThh:mm:ss+HH:MM

where

• YYYY is the year

• MM is the month

• DD is the day

• T is the separator between the date and time component

• hh is the hour in 24-hour format

• mm is the minutes

• ss is the seconds

• +HH:MM is the time zone offset from Universal Time (UTC), or Greenwich Mean
Time

An example of this construction is:

2005-01-01T09:30:10-07:00

The data after the "T" is optional, therefore the following date: 2005-01-01 can be
formatted using either date formatting option. Note that if you do not include the time
zone offset, the time will be formatted to the UTC time.

Translation Considerations
If you are designing a template to be translatable, explicitly setting a date format mask
is not recommended. This is because the date format mask is part of the template, and
all published reports based on this template will have the same date format regardless
of locale.

For translatable templates, it is recommended that you use the Oracle abstract date
format.

If it is necessary to explicitly specify a format mask, the Oracle format mask is
recommended over the MS format mask to ensure future compatibility.

Using the Microsoft Date Format Mask
To apply a date format to a form field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Date, Current Date, or Current Time.

3. Select the appropriate Date format from the list of options.

Creating an RTF Template 2-91

If you do not specify the mask in the Date format field, the abstract format mask
"MEDIUM" will be used as default. See Oracle Abstract Format Masks, page 2-96 for
the description.

The following figure shows the Text Form Field Options dialog box with a date format
applied:

The following table lists the supported Microsoft date format mask components:

Symbol Meaning

d The day of the month. Single-digit days will not have a leading zero.

dd The day of the month. Single-digit days will have a leading zero.

ddd The abbreviated name of the day of the week, as defined in AbbreviatedDayNames.

dddd The full name of the day of the week, as defined in DayNames.

M The numeric month. Single-digit months will not have a leading zero.

MM The numeric month. Single-digit months will have a leading zero.

MMM The abbreviated name of the month, as defined in AbbreviatedMonthNames.

MMMM The full name of the month, as defined in MonthNames.

yy The year without the century. If the year without the century is less than 10, the year is
displayed with a leading zero.

yyyy The year in four digits.

gg The period or era. This pattern is ignored if the date to be formatted does not have an
associated period or era string.

h The hour in a 12-hour clock. Single-digit hours will not have a leading zero.

hh The hour in a 12-hour clock. Single-digit hours will have a leading zero.

H The hour in a 24-hour clock. Single-digit hours will not have a leading zero.

HH The hour in a 24-hour clock. Single-digit hours will have a leading zero.

2-92 Oracle XML Publisher User’s Guide

Symbol Meaning

m The minute. Single-digit minutes will not have a leading zero.

mm The minute. Single-digit minutes will have a leading zero.

s The second. Single-digit seconds will not have a leading zero.

ss The second. Single-digit seconds will have a leading zero.

f Displays seconds fractions represented in one digit.

ff Displays seconds fractions represented in two digits.

fff Displays seconds fractions represented in three digits.

ffff Displays seconds fractions represented in four digits.

fffff Displays seconds fractions represented in five digits.

ffffff Displays seconds fractions represented in six digits.

fffffff Displays seconds fractions represented in seven digits.

tt The AM/PM designator defined in AMDesignator or PMDesignator, if any.

z Displays the time zone offset for the system’s current time zone in whole hours
only. (This element can be used for formatting only)

zz Displays the time zone offset for the system’s current time zone in whole hours
only. (This element can be used for formatting only)

zzz Displays the time zone offset for the system’s current time zone in hours and minutes.

: The default time separator defined in TimeSeparator.

/ The default date separator defined in DateSeparator.

’ Quoted string. Displays the literal value of any string between two ‘ characters.

" Quoted string. Displays the literal value of any string between two “ characters.

Using the Oracle Format Mask
To apply the Oracle format mask to a date field:

1. Open the Form Field Options dialog box for the placeholder field.

2. Set the Type to Regular Text.

3. Select the Add Help Text... button to open the Form Field Help Text dialog.

4. Insert the following syntax to specify the date format mask:

<?format-date:date_string; ’ABSTRACT_FORMAT_MASK’;’TIMEZONE’?>

or

<?format-date-and-calendar:date_string; ’ABSTRACT_FORMAT_
MASK’;’CALENDAR_NAME’;’TIMEZONE’?>

where time zone is optional. The detailed usage of format mask, calendar and time
zone is described below.

Creating an RTF Template 2-93

If no format mask is specified, the abstract format mask "MEDIUM" will be used
as default.

Example form field help text entry:

<?format-date:hiredate;’YYYY-MM-DD’?>

The following table lists the supported Oracle format mask components:

Symbol Meaning

-
/
,
.
;
:
"text"

Punctuation and quoted text are reproduced in the result.

AD
A.D.

AD indicator with or without periods.

AM
A.M.

Meridian indicator with or without periods.

BC
B.C.

BC indicator with or without periods.

CC Century. For example, 2002 returns 21; 2000 returns 20.

DAY Name of day, padded with blanks to length of 9 characters.

D Day of week (1-7).

DD Day of month (1-31).

DDD Day of year (1-366).

DL Returns a value in the long date format.

DS Returns a value in the short date format.

DY Abbreviated name of day.

E Abbreviated era name.

EE Full era name.

FF[1..9] Fractional seconds. Use the numbers 1 to 9 after FF to specify the number of digits in the
fractional second portion of the datetime value returned.
Example:
’HH:MI:SS.FF3’

HH Hour of day (1-12).

HH12 Hour of day (1-12).

HH24 Hour of day (0-23).

2-94 Oracle XML Publisher User’s Guide

Symbol Meaning

MI Minute (0-59).

MM Month (01-12; JAN = 01).

MON Abbreviated name of month.

MONTH Name of month, padded with blanks to length of 9 characters.

PM
P.M.

Meridian indicator with or without periods.

RR Lets you store 20th century dates in the 21st century using only two digits.

RRRR Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same return as
RR. If you don’t want this functionality, then simply enter the 4-digit year.

SS Seconds (0-59).

TZD Daylight savings information. The TZD value is an abbreviated time zone string with daylight
savings information. It must correspond to the region specified in TZR.
Example:
PST (for Pacific Standard Time)
PDT (for Pacific Daylight Time)

TZH Time zone hour. (See TZM format element.)

TZM Time zone minute. (See TZH format element.)
Example:
’HH:MI:SS.FFTZH:TZM’

TZR Time zone region information. The value must be one of the time zone regions supported in
the database. Example: PST (Pacific Standard Time)

WW Week of year (1-53) where week 1 starts on the first day of the year and continues to the
seventh day of the year.

W Week of month (1-5) where week 1 starts on the first day of the month and ends on the seventh.

X Local radix character.

YYYY 4-digit year.

YY
Y

Last 2, or 1 digit(s) of year.

Default Format Mask
If you do not want to specify a format mask with either the MS method or the Oracle
method, you can omit the mask definition and use the default format mask. The default
format mask is the MEDIUM abstract format mask from Oracle. (See Oracle Abstract
Format Masks, page 2-96 for the definition.)

To use the default option using the Microsoft method, set the Type to Date, but leave the
Date format field blank in the Text Form Field Options dialog.

To use the default option using the Oracle method, do not supply a mask definition to
the "format-date" function call, for example:

Creating an RTF Template 2-95

<?format-date:hiredate?>

Oracle Abstract Format Masks
The abstract date format masks reflect the default implementations of date/time
formatting in the I18N library. When you use one of these masks, the output generated
will depend on the locale associated with the report.

Specify the abstract mask using the following syntax:

<?format-date:fieldname;’MASK’?>
where fieldname is the XML element tag and

MASK is the Oracle abstract format mask name

For example:

<?format-date:hiredate;’SHORT’?>
<?format-date:hiredate;’LONG_TIME_TZ’?>
The following table lists the abstract format masks and the sample output that would be
generated for US locale:

Mask Output for US Locale

SHORT 2/31/99

MEDIUM Dec 31, 1999

LONG Friday, December 31, 1999

SHORT_TIME 12/31/99 6:15 PM

MEDIUM_TIME Dec 31, 1999 6:15 PM

LONG_TIME Friday, December 31, 1999 6:15 PM

SHORT_TIME_TZ 12/31/99 6:15 PM GMT

MEDIUM_TIME_TZ Dec 31, 1999 6:15 PM GMT

LONG_TIME_TZ Friday, December 31, 1999 6:15 PM GMT

Currency Formatting
XML Publisher enables you to define specific currency format masks to apply to your
published data at runtime.

To utilize currency formatting, you must:

1. Define your currency formats in XML Publisher’s Administration interface. See
Defining Currency Formats, page 8-16.

2. Assign the Currency Format Set as a configuration property at the desired level
(site, data definition, or template). It is available from the FO Processing Properties,
page 8-6 list.

3. Enter the format-currency command in your RTF template to apply the format
to the field at runtime.

To use the format-currency command:
1. In the form field dialog of the field you want to format, enter the following syntax:

<?format-currency:ELEMENT_NAME;’currency-format-code’?>

2-96 Oracle XML Publisher User’s Guide

For example, to format an element from your XML file named CURRENT_BALANCE
according to a currency code USD, enter the following in the form field for the
element:

<?format-currency:CURRENT_BALANCE;’USD’?>
The currency code must correspond to a currency format that is defined in the
Currency Format Set to be used with this report. The Currency Format Set can
be specified at the site level, data definition level, or template level. For more
information, see Defining Currency Formats, page 8-16.

Calendar and Time Zone Support

Calendar Specication
The term "calendar" refers to the calendar date displayed in the published report. The
following types are supported:

• GREGORIAN

• ARABIC_HIJRAH

• ENGLISH_HIJRAH

• JAPANESE_IMPERIAL

• THAI_BUDDHA

• ROC_OFFICIAL (Taiwan)

Use one of the following methods to set the calendar type:

• Call the format-date-and-calendar function and declare the calendar type.

For example:<?format-date-and-calendar:hiredate;’LONG_TIME_
TZ’;’ROC_OFFICIAL’;?>

The following graphic shows the output generated using this definition with locale
set to zh-TW and time zone set to Asia/Taipei:

• Set the calendar type using the profile option XDO: Calendar Type
(XDO_CALENDAR_TYPE).

Note: The calendar type specified in the template will override the
calendar type set in the profile option.

Time Zone Specication
There are two ways to specify time zone information:

• Call the format-date or format-date-and-calendar function with the Oracle format.

• Set the user profile option Client Timezone (CLIENT_TIMEZONE_ID) in Oracle
Applications.

If no time zone is specified, UTC is used.

Creating an RTF Template 2-97

In the template, the time zone must be specified as a Java time zone string, for
example, America/Los Angeles. The following example shows the syntax to enter in the
help text field of your template:

<?format-date:hiredate;’LONG_TIME_TZ’;’Asia/Shanghai’?>

Using External Fonts
XML Publisher enables you to use fonts in your output that are not normally available
on the server. To set up a new font for your report output, use the font to design your
template on your client machine, then make it available on the server, and configure
XML Publisher to access the font at runtime.

1. Use the font in your template.

1. Copy the font to your <WINDOWS_HOME>/fonts directory.

2. Open Microsoft Word and build your template.

3. Insert the font in your template: Select the text or form field and then select the
desired font from the font dialog box (Format > Font) or font drop down list.

The following graphic shows an example of the form field method and the text
method:

2. Place the font on the server.

Place the font in a directory accessible to the formatting engine at runtime.

3. Set the XML Publisher "font" property.

You can set the font property either in the XML Publisher Configuration file or
directly in the template.

To set the property in the configuration file:

Update the XML Publisher configuration file "fonts" section with the font name
and its location on the server. For example, the new entry for a TrueType font is
structured as follows:

<truetype path="\user\fonts\MyFontName.ttf"/>

See XML Publisher Configuration File, page 8-2 for more information.

To set the property in the template:

See Setting Properties, page 2-76.

2-98 Oracle XML Publisher User’s Guide

Now you can run your report and XML Publisher will use the font in the output as
designed. For PDF output, the advanced font handling features of XML Publisher
embed the external font glyphs directly into the final document. The embedded
font only contains the glyphs required for the document and not the complete font
definition. Therefore the document is completely self-contained, eliminating the need to
have external fonts installed on the printer.

For an example implementation, see the white paper, "Check Printing Using Oracle
XML Publisher," MetaLink note 312353.1. This document describes how to set up the
MICR font used in check printing.

Advanced Design Options
If you have more complex design requirements, XML Publisher supports the use of XSL
and XSL:FO elements, and has also extended a set of SQL functions.

RTF templates offer extremely powerful layout options using XML Publisher’s
syntax. However, because the underlying technology is based on open W3C
standards, such as XSL and XPATH, you are not limited by the functionality described in
this guide. You can fully utilize the layout and data manipulation features available in
these technologies.

XPath Overview
XPath is an industry standard developed by the World Wide Web Consortium (W3C). It
is the method used to navigate through an XML document. XPath is a set of syntax rules
for addressing the individual pieces of an XML document. You may not know it, but
you have already used XPath; RTF templates use XPath to navigate through the XML
data at runtime.

This section contains a brief introduction to XPath principles. For more information, see
the W3C Web site: http://www.w3.org/TR/xpath

XPath follows the Document Object Model (DOM), which interprets an XML document
as a tree of nodes. A node can be one of seven types:

• root

• element

• attribute

• text

• namespace

• processing instruction

• comment

Many of these elements are shown in the following sample XML, which contains a
catalog of CDs:

Creating an RTF Template 2-99

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

<?xml version="1.0" encoding="UTF-8"?>
<! - My CD Listing - >
<CATALOG>
<CD cattype=Folk>
<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>
</CD>
<CD cattype=Rock>
<TITLE>Hide Your Heart</TITLE>
<ARTIST>Bonnie Tylor</ARTIST>
<COUNTRY>UK</COUNTRY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>
</CD>

</CATALOG>
The root node in this example is CATALOG. CD is an element, and it has an attribute
cattype. The sample contains the comment My CD Listing. Text is contained within
the XML document elements.

Locating Data
Locate information in an XML document using location-path expressions.

A node is the most common search element you will encounter. Nodes in the example
CATALOG XML include CD, TITLE, and ARTIST. Use a path expression to locate nodes
within an XML document. For example, the following path returns all CD elements:

//CATALOG/CD
where

the double slash (//) indicates that all elements in the XML document that match the
search criteria are to be returned, regardless of the level within the document.

the slash (/) separates the child nodes. All elements matching the pattern will be returned.

To retrieve the individual TITLE elements, use the following command:

/CATALOG/CD/TITLE
This example will return the following XML:

<CATALOG>
<CD cattype=Folk>
<TITLE>Empire Burlesque</TITLE>
</CD>
<CD cattype=Rock>
<TITLE>Hide Your Heart</TITLE>
</CD>

</CATALOG>
Further limit your search by using square brackets. The brackets locate elements with
certain child nodes or specified values. For example, the following expression locates
all CDs recorded by Bob Dylan:

/CATALOG/CD[ARTIST="Bob Dylan"]
Or, if each CD element did not have an PRICE element, you could use the following
expression to return only those CD elements that include a PRICE element:

/CATALOG/CD[PRICE]

2-100 Oracle XML Publisher User’s Guide

Use the bracket notation to leverage the attribute value in your search. Use the @ symbol
to indicate an attribute. For example, the following expression locates all Rock CDs (all
CDs with the cattype attribute value Rock):

//CD[@cattype="Rock"]
This returns the following data from the sample XML document:

<CD cattype=Rock>
<TITLE>Hide Your Heart</TITLE>
<ARTIST>Bonnie Tylor</ARTIST>
<COUNTRY>UK</COUNTRY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>
</CD>

You can also use brackets to specify the item number to retrieve. For example, the first
CD element is read from the XML document using the following XPath expression:

/CATALOG/CD[1]
The sample returns the first CD element:

<CD cattype=Folk>
<TITLE>Empire Burlesque</TITLE>
<ARTIST>Bob Dylan</ARTIST>
<COUNTRY>USA</COUNTRY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>
</CD>

XPath also supports wildcards to retrieve every element contained within the specified
node. For example, to retrieve all the CDs from the sample XML, use the following
expression:

/CATALOG/*
You can combine statements with Boolean operators for more complex searches. The
following expression retrieves all Folk and Rock CDs, thus all the elements from the
sample:

//CD[@cattype="Folk"]|//CD[@cattype="Rock"]
The pipe (|) is equal to the logical OR operator. In addition, XPath recognizes the logical
OR and AND, as well as the equality operators: <=, <, >, >=, ==, and !=. For example, we
can find all CDs released in 1985 or later using the following expression:

/CATALOG/CD[YEAR >=1985]

Starting Reference
The first character in an XPath expression determines the point at which it should start in
the XML tree. Statements beginning with a forward slash (/) are considered absolute. No
slash indicates a relative reference. An example of a relative reference is:

CD/*
This statement begins the search at the current reference point. That means if the
example occurred within a group of statements the reference point left by the previous
statement would be utilized.

A noted earlier, double forward slashes (//) retrieve every matching element regardless
of location in the document.

Creating an RTF Template 2-101

Context and Parent
To select current and parent elements, XPath recognizes the dot notation commonly used
to navigate directories. Use a single period (.) to select the current node and use double
periods (..) to return the parent of the current node. For example, to retrieve all child
nodes of the parent of the current node, use:

../*
Therefore, to access all CDs from the sample XML, use the following expression:

/CATALOG/CD/..
You could also access all the CD tittles released in 1988 using the following:

/CATALOG/CD/TITLE[../YEAR=1988]
The .. is used to navigate up the tree of elements to find the YEAR element at the same
level as the TITLE, where it is then tested for a match against "1988". You could also use
// in this case, but if the element YEAR is used elsewhere in the XML document, you
may get erroneous results.

XPath is an extremely powerful standard when combined with RTF templates allowing
you to use conditional formatting and filtering in your template.

Namespace Support
If your XML data contains namespaces, you must declare them in the template prior to
referencing the namespace in a placeholder. Declare the namespace in the template using
either the basic RTF method or in a form field. Enter the following syntax:

<?namespace:namespace name= namespace url?>

For example:

<?namespace:fsg=http://www.oracle.com/fsg/2002-30-20/?>

Once declared, you can use the namespace in the placeholder markup, for
example: <?fsg:ReportName?>

Using the Context Commands
The XML Publisher syntax is simplified XSL instructions. This syntax, along with any
native XSL commands you may use in your template, is converted to XSL-FO when you
upload the template to the Template Manager. The placement of these instructions
within the converted stylesheet determines the behavior of your template.

XML Publisher’s RTF processor places these instructions within the XSL-FO stylesheet
according to the most common context. However, sometimes you need to define the
context of the instructions differently to create a specific behavior. To support this
requirement, XML Publisher provides a set of context commands that allow you to
define the context (or placement) of the processing instructions. For example, using
context commands, you can:

• Specify an if statement in a table to refer to a cell, a row, a column or the whole table.

• Specify a for-each loop to repeat either the current data or the complete section (to
create new headers and footers and restart the page numbering)

• Define a variable in the current loop or at the beginning of the document.

You can specify a context for both processing commands using the XML Publisher
syntax and those using native XSL.

2-102 Oracle XML Publisher User’s Guide

• To specify a context for a processing command using the simplified XML Publisher
syntax, simply add @context to the syntax instruction. For example:

• <?for-each@section:INVOICE?> - specifies that the group INVOICE should
begin a new section for each occurrence. By adding the section context, you can
reset the header and footer and page numbering.

• <?if@column:VAT?> - specifies that the if statement should apply to the VAT
column only.

• To specify a context for an XSL command, add the xdofo:ctx="context"
attribute to your tags to specify the context for the insertion of the instructions. The
value of the context determines where your code is placed.

For example:

<xsl:for-each xdofo:ctx="section" select ="INVOICE">

<xsl:attribute xdofo:ctx="inblock" name="background-
color">red</xsl:attribute>

XML Publisher supports the following context types:

Creating an RTF Template 2-103

Context Description

section The statement affects the whole section including the header and footer. For
example, a for-each@section context command creates a new section for each
occurrence - with restarted page numbering and header and footer.
See Batch Reports, page 2-78 for an example of this usage.

column The statement will affect the whole column of a table. This context is typically used
to show and hide table columns depending on the data.
See Column Formatting, page 2-55 for an example.

cell The statement will affect the cell of a table. This is often used together with @column
in cross-tab tables to create a dynamic number of columns.
See Cross-Tab Support, page 2-80 for an example.

block The statement will affect multiple complete fo:blocks (RTF paragraphs). This
context is typically used for if and for-each statements. It can also be used to apply
formatting to a paragraph or a table cell.
See Cell Highlighting, page 2-58 for an example.

inline The context will become the single statement inside an fo:inline block. This context is
used for variables.

incontext The statement is inserted immediately after the surrounding statement. This is the
default for <?sort?> statements that need to follow the surrounding for-each as
the first element.

inblock The statement becomes a single statement inside an fo:block (RTF paragraph). This is
typically not useful for control statements (such as if and for-each) but is useful
for statements that generate text, such as call-template.

inlines The statement will affect multiple complete inline sections. An inline section is text
that uses the same formatting, such as a group of words rendered as bold.
See If Statements in Boilerplate Text, page 2-52.

begin The statement will be placed at the beginning of the XSL stylesheet. This is required
for global variables. See Defining Parameters, page 2-74.

end The statement will be placed at the end of the XSL stylesheet.

The following table shows the default context for the XML Publisher commands:

2-104 Oracle XML Publisher User’s Guide

Command Context

apply-template inline

attribute inline

call-template inblock

choose block

for-each block

if block

import begin

param begin

sort incontext

template end

value-of inline

variable end

Using XSL Elements
You can use any XSL element in your template by inserting the XSL syntax into a form
field.

If you are using the basic RTF method, you cannot insert XSL syntax directly into
your template. XML Publisher has extended the following XSL elements for use in
RTF templates.

To use these in a basic-method RTF template, you must use the XML Publisher Tag form
of the XSL element. If you are using form fields, use either option.

Apply a Template Rule
Use this element to apply a template rule to the current element’s child nodes.

XSL Syntax: <xsl:apply-templates select="name">

XML Publisher Tag: <?apply:name?>

This function applies to <xsl:template-match="n"> where n is the element name.

Copy the Current Node
Use this element to create a copy of the current node.

XSL Syntax: <xsl:copy-of select="name">

XML Publisher Tag: <?copy-of:name?>

Creating an RTF Template 2-105

Call Template
Use this element to call a named template to be inserted into or applied to the current
template. For example, use this feature to render a table multiple times.

XSL Syntax: <xsl:call-template name="name">

XML Publisher Tag: <?call-template:name?>

Template Declaration
Use this element to apply a set of rules when a specified node is matched.

XSL Syntax: <xsl:template name="name">

XML Publisher Tag: <?template:name?>

Variable Declaration
Use this element to declare a local or global variable.

XSL Syntax: <xsl:variable name="name">

XML Publisher Tag: <?variable:name?>

Example:

<xsl:variable name="color" select="red"/>
Assigns the value "red" to the "color" variable. The variable can then be referenced in
the template.

Import Stylesheet
Use this element to import the contents of one style sheet into another.

Note: An imported style sheet has lower precedence than the importing
style sheet.

XSL Syntax: <xsl:import href="url">

XML Publisher Tag: <?import:url?>

Dene the Root Element of the Stylesheet
This and the <xsl:stylesheet> element are completely synonymous elements. Both
are used to define the root element of the style sheet.

Note: An included style sheet has the same precedence as the including
style sheet.

XSL Syntax: <xsl:stylesheet xmlns:x="url">

XML Publisher Tag: <?namespace:x=url?>

Note: The namespace must be declared in the template. See Namespace
Support, page 2-102.

Native XSL Number Formatting
The native XSL format-number function takes the basic format:

format-number(number,format,[decimalformat])

2-106 Oracle XML Publisher User’s Guide

Parameter Description

number Required. Specifies the number to be formatted.

format Required. Specifies the format pattern. Use the following
characters to specify the pattern:

• # (Denotes a digit. Example: ####)

• 0 (Denotes leading and following zeros. Example: 0000.00)

• . (The position of the decimal point Example: ###.##)

• , (The group separator for thousands. Example: ###,###.##)

• % (Displays the number as a percentage. Example: ##%)

• ; (Pattern separator. The first pattern will be used for positive
numbers and the second for negative numbers)

decimalformat Optional. For more information on the decimal format please
consult any basic XSLT manual.

Using FO Elements
You can use the native FO syntax inside the Microsoft Word form fields.

For more information on XSL-FO see the W3C Website at http://www.w3.org/2002/
08/XSLFOsummary.html

Best Practices

Using Tables
To optimize the exact placement of elements when the template is transformed into
XSL, it is recommended that you use tables to define the placement and alignment.

Note the use of tables in the Payables Invoice Register:

Creating an RTF Template 2-107

http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html
http://www.w3.org/2002/08/XSLFOsummary.html

A table is used in the header to place the image, the title, and the date in exact
positions. By using a table, each element can be aligned within its own cell; thereby
allowing a left alignment for the image, a center alignment for the title, and a right
alignment for the date and page number.

A table is also used for the totals line of the report to achieve alignment with the entries
in the Invoices table.

Tables used for formatting only can be hidden at runtime by turning off (hiding) the
table gridlines.

Using Subtemplates
It is likely that you will design several templates that contain common components or
functionality, such as address formatting or string formatting functions. Rather than
replicate this functionality in every template, you can place it in a subtemplate that is
stored in the template manager and called from all the others.

If your template requires complex calculations or conditional formatting of tabular
data, it is recommended that you place these instructions in a subtemplate to keep the
primary template simple for your users to understand.

Using a subtemplate consists of four steps:

1. Create the subtemplate

2. Register the subtemplate in the Template Manager

3. Import the subtemplate to the main template

4. Call the subtemplate in your main template

Create the Subtemplate

To define a template as a subtemplate, add the following tag to the beginning of the
section to be included:

<?template:template_name?>

2-108 Oracle XML Publisher User’s Guide

where

template_name is whatever name you choose for the section.

Note that in a single subtemplate file, you can have multiple <?template: ?>
entries, marking different segments you would like to include in other files.

Register the Template in the Template Manager

Register the subtemplate in the Template Manager. To define it as a subtemplate, select
Subtemplate = YES.

For more information about the Template Manager, see Creating the Template, page 5-4.

Import the Subtemplate to the Main Template

Call a template from within another template by using the import command as follows:

<?import:xdo://APPCODE.TEMPLATE_CODE.LANG.TERR?>
where

APPCODE is the Application code for the template defined in the Template Manager.

TEMPLATE_CODE is the template code defined in the Template Manager.

LANG is the template language specified in the Template Manager.

TERR is the template territory specified in the Template Manager.

Call the Subtemplate in Your Main Template

Once you have imported the template, use the call template command to render its
contents in the position specified, as follows:

<?call template:template_name?>
where

template_name is the name assigned in the template declaration of the subtemplate.

Example
In this example, your company address is a fixed string that appears in all your
templates. Rather than reproduce the string in all your templates, you can place it in one
template and reference it from all the others.

The common components template will contain the following:

<?template:MyAddress?>
R&G Corporation
500 Marine Parkway
Redwood Shores, CA 94065
<?end template?>
This defines the string in a function (or XSL template) called MyAddress. Save this
template as RTF and add it to the Template Manager using the following criteria:

• Application Code: CUSTOM

• Template Code: COMMONCOMPONENTS

• Language: English

• Territory: United States of America

• Select "Yes" for Subtemplate

Now this subtemplate and any functions therein can be referenced from any other
template.

Creating an RTF Template 2-109

To use this subtemplate in another template, first import it by inserting the following
syntax at the top of the calling template:

<?import:xdo://CUSTOM.COMMONCOMPONENTS.en.US?>
At the position in the template where we you want to display the address, enter:

<?call template:MyAddress?>
At runtime the string will be fetched from the subtemplate and rendered in the layout
of the calling template.

This functionality is not limited to just strings, you can insert any valid RTF template
functionality in a subtemplate, and even pass parameters from one to the other.

2-110 Oracle XML Publisher User’s Guide

3
Creating a PDF Template

This chapter covers the following topics:

• PDF Template Overview

• Designing the Layout

• Adding Markup to the Template Layout

• Adding Page Numbers and Page Breaks

• Performing Calculations

• Completed PDF Template

• Runtime Behavior

• Creating a Template from a Downloaded PDF

PDF Template Overview
To create a PDF template, take any existing PDF document and apply the XML Publisher
markup. Because the source of the PDF document does not matter, you have multiple
design options. For example:

• Design the layout of your template using any application that generates documents
that can be converted to PDF

• Scan a paper document to use as a template

• Download a PDF document from a third-party Web site

Note: The steps required to create a template from a third-party PDF
depend on whether form fields have been added to the document. For
more information, see Creating a Template from a Downloaded PDF,
page 3-15.

If you are designing the layout, note that once you have converted to PDF, your layout
is treated like a set background. When you mark up the template, you draw fields on
top of this background. To edit the layout, you must edit your original document and
then convert back to PDF.

For this reason, the PDF template is not recommended for documents that will require
frequent updates to the layout. However, it is appropriate for forms that will have a fixed
layout, such as invoices or purchase orders.

Creating a PDF Template 3-1

Supported Modes
XML Publisher supports Adobe Acrobat 5.0 (PDF specification version 1.4). If you are
using Adobe Acrobat Professional 6.0 (or later), use the Reduce File Size Option (from
the Filemenu) to save your file as Adobe Acrobat 5.0 compatible.

For PDF conversion, XML Publisher supports any PDF conversion utility, such as Adobe
Acrobat Distiller.

Designing the Layout
To design the layout of your template you can use any desktop application that generates
documents that can be converted to PDF. Or, scan in an original paper document to
use as the background for the template.

The following is the layout for a sample purchase order. It was designed using Microsoft
Word and converted to PDF using Adobe Acrobat Distiller.

3-2 Oracle XML Publisher User’s Guide

The following is the XML data that will be used as input to this template:

Creating a PDF Template 3-3

<?xml version="1.0"?>
<POXPRPOP2>
<G_HEADERS>
<POH_PO_NUM>1190-1</POH_PO_NUM>
<POH_REVISION_NUM>0</POH_REVISION_NUM>
<POH_SHIP_ADDRESS_LINE1>3455 108th Avenue</POH_SHIP_ADDRESS_LINE

1>
<POH_SHIP_ADDRESS_LINE2></POH_SHIP_ADDRESS_LINE2>
<POH_SHIP_ADDRESS_LINE3></POH_SHIP_ADDRESS_LINE3>
<POH_SHIP_ADR_INFO>Seattle, WA 98101</POH_SHIP_ADR_INFO>
<POH_SHIP_COUNTRY>United States</POH_SHIP_COUNTRY>
<POH_VENDOR_NAME>Allied Manufacturing</POH_VENDOR_NAME>
<POH_VENDOR_ADDRESS_LINE1>1145 Brokaw Road</POH_VENDOR_ADDRESS_LIN
E1>
<POH_VENDOR_ADR_INFO>San Jose, CA 95034</POH_VENDOR_ADR_INFO>
<POH_VENDOR_COUNTRY>United States</POH_VENDOR_COUNTRY>
<POH_BILL_ADDRESS_LINE1>90 Fifth Avenue</POH_BILL_ADDRESS_LINE1>
<POH_BILL_ADR_INFO>New York, NY 10022-3422</POH_BILL_ADR_INFO>
<POH_BILL_COUNTRY>United States</POH_BILL_COUNTRY>
<POH_BUYER>Smith, J</POH_BUYER>
<POH_PAYMENT_TERMS>45 Net (terms date + 45)</POH_PAYMENT_TERMS>
<POH_SHIP_VIA>UPS</POH_SHIP_VIA>
<POH_FREIGHT_TERMS>Due</POH_FREIGHT_TERMS>
<POH_CURRENCY_CODE>USD</POH_CURRENCY_CODE>
<POH_CURRENCY_CONVERSION_RATE></POH_CURRENCY_CONVERSION_RATE>
<LIST_G_LINES>
<G_LINES>
<POL_LINE_NUM>1</POL_LINE_NUM>
<POL_VENDOR_PRODUCT_NUM></POL_VENDOR_PRODUCT_NUM>
<POL_ITEM_DESCRIPTION>PCMCIA II Card Holder</POL_ITEM_DESCRIPTION>
<POL_QUANTITY_TO_PRINT></POL_QUANTITY_TO_PRINT>
<POL_UNIT_OF_MEASURE>Each</POL_UNIT_OF_MEASURE>
<POL_PRICE_TO_PRINT>15</POL_PRICE_TO_PRINT>
<C_FLEX_ITEM>CM16374</C_FLEX_ITEM>
<C_FLEX_ITEM_DISP>CM16374</C_FLEX_ITEM_DISP>
<PLL_QUANTITY_ORDERED>7500</PLL_QUANTITY_ORDERED>
<C_AMOUNT_PLL>112500</C_AMOUNT_PLL>
<C_AMOUNT_PLL_DISP> 112,500.00 </C_AMOUNT_PLL_DISP>
</G_LINES>
</LIST_G_LINES>
<C_AMT_POL_RELEASE_TOTAL_ROUND>312420/<C_AMT_POL_RELEASE_TOTAL_ROU
ND>
</G_HEADERS>
</POXPRPOP2>

Adding Markup to the Template Layout
After you have converted your document to PDF, you define form fields that will display
the data from the XML input file. These form fields are placeholders for the data.

The process of associating the XML data to the PDF template is the same as the
process for the RTF template. See: Associating the XML Data to the Template
Layout: Associating the XML data to the template layout, page 2-3.

When you draw the form fields in Adobe Acrobat, you are drawing them on top of the
layout that you designed. There is not a relationship between the design elements on

3-4 Oracle XML Publisher User’s Guide

your template and the form fields. You therefore must place the fields exactly where you
want the data to display on the template.

Creating a Placeholder
You can define a placeholder as text, a check box, or a radio button, depending on how
you want the data presented.

Note: If you are using Adobe Acrobat 5.0, the Form Tool is available
from the standard toolbar. If you are using Adobe Acrobat 6.0 or
later, display the Forms Toolbar from the Tools menu by selecting Tools
> Advanced Editing > Forms > Show Forms Toolbar.

Naming the Placeholder
When you enter a name for the placeholder, enter either the XML source field name or
assign a different, unique name.

Note: The placeholder name must not contain the "." character.

If you assign a different name, you must map the template field to the data source field
when you register the template in the Template Manager. Mapping requires that you
load the XML schema. If you give the template field the same name as the XML source
field, no mapping is required.

For information on mapping fields in the Template Manager, see Mapping PDF Template
Fields, page 5-8.

Creating a Text Placeholder
To create a text placeholder in your PDF document:

Acrobat 5.0 Users:
1. Select the Form Tool from the Acrobat toolbar.

2. Draw a form field box in the position on the template where you want the field to
display. Drawing the field opens the Field Properties dialog box.

3. In the Name field of the Field Properties dialog box, enter a name for the field.

4. Select Text from the Type drop down menu.

You can use the Field Properties dialog box to set other attributes for the
placeholder. For example, enforce maximum character size, set field data type, data
type validation, visibility, and formatting.

5. If the field is not placed exactly where desired, drag the field for exact placement.

Acrobat 6.0 (and later) Users:
1. Select the Text Field Tool from the Forms Toolbar.

2. Draw a form field box in the position on the template where you want the field to
display. Drawing the field opens the Text Field Properties dialog box.

3. On the General tab, enter a name for the placeholder in the Name field.

Creating a PDF Template 3-5

You can use the Text Field Properties dialog box to set other attributes for the
placeholder. For example, enforce maximum character size, set field data type, data
type validation, visibility, and formatting.

4. If the field is not placed exactly where desired, drag the field for exact placement.

Supported Field Properties Options
XML Publisher supports the following options available from the Field Properties dialog
box. For more information about these options, see the Adobe Acrobat documentation.

• Appearance

• Border Settings: color, background, width, and style

• Text Settings: color, font, size

• Common Properties: read only, required, visible/hidden, orientation (in degrees)

(In Acrobat 6.0, these are available from the General tab)

• Border Style

• Options tab

• Multi-line

• Scrolling Text

• Format tab - Number category options only

• Calculate tab - all calculation functions

Creating a Check Box
A check box is used to present options from which more than one can be selected. Each
check box represents a different data element. You define the value that will cause the
check box to display as "checked."

For example, a form contains a check box listing of automobile options such as Power
Steering, Power Windows, Sunroof, and Alloy Wheels. Each of these represents a
different element from the XML file. If the XML file contains a value of "Y" for any of
these fields, you want the check box to display as checked. All or none of these options
may be selected.

To create a check box field:

Acrobat 5.0 Users:
1. Draw the form field.

2. In the Field Properties dialog box, enter a Name for the field.

3. Select Check Box from the Type drop down list.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "checked" state.

For the example, enter "Y" for each check box field.

Acrobat 6.0 (and later) Users:
1. Select the Check Box Tool from the Forms Toolbar.

3-6 Oracle XML Publisher User’s Guide

2. Draw the check box field in the desired position.

3. On the General tab of the Check Box Properties dialog box, enter a Name for the
field.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "checked" state.

For the example, enter "Y" for each check box field.

Creating a Radio Button Group
A radio button group is used to display options from which only one can be selected.

For example, your XML data file contains a field called <SHIPMENT_METHOD>. The
possible values for this field are "Standard" or "Overnight". You represent this
field in your form with two radio buttons, one labeled "Standard" and one
labeled "Overnight". Define both radio button fields as placeholders for the
<SHIPMENT_METHOD> data field. For one field, define the "on" state when the value is
"Standard". For the other, define the "on" state when the value is "Overnight".

To create a radio button group:

Acrobat 5.0 Users:
1. Draw the form field.

2. On the Field Properties dialog box, enter a Name for the field. Each radio button
you define to represent this value can be named differently, but must be mapped to
the same XML data field.

3. Select Radio Button from the Type drop down list.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "on" state.

For the example, enter "Standard" for the field labeled "Standard". Enter "Overnight"
for the field labeled "Overnight".

Acrobat 6.0 (and later) Users:
1. Select the Radio Button Tool from the Forms Toolbar.

2. Draw the form field in the position desired on the template.

3. On the General tab of the Radio Button Properties dialog, enter a Name for
the field. Each radio button you define to represent this value can be named
differently, but must be mapped to the same XML data field.

4. Select the Options tab.

5. In the Export Value field enter the value that the XML data field should match to
enable the "on" state.

For the example, enter "Standard" for the field labeled "Standard". Enter "Overnight"
for the field labeled "Overnight".

Creating a PDF Template 3-7

Dening Groups of Repeating Fields
In the PDF template, you explicitly define the area on the page that will contain the
repeating fields. For example, on the purchase order template, the repeating fields
should display in the block of space between the Item header row and the Total field.

To define the area to contain the group of repeating fields:

1. Insert a form field at the beginning of the area that is to contain the group. (Acrobat
6.0 users select the Text Field Tool, then draw the form field.)

2. In the Name field of the Field Properties window, enter any unique name you
choose. This field is not mapped.

3. Acrobat 5.0 users: Select Text from the Type drop down list.

4. In the Short Description field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0) of the
Field Properties window, enter the following syntax:

<?rep_field="BODY_START"?>

5. Define the end of the group area by inserting a form field at the end of the area
the that is to contain the group.

6. In the Name field of the Field Properties window, enter any unique name you
choose. This field is not mapped. Note that the name you assign to this field must be
different from the name you assigned to the "body start" field.

7. Acrobat 5.0 users: Select Text from the Type drop down list.

8. In the Short Description field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0) of the
Field Properties window, enter the following syntax:

<?rep_field="BODY_END"?>

To define a group of repeating fields:

1. Insert a placeholder for the first element of the group.

Note: The placement of this field in relationship to the BODY_START
tag defines the distance between the repeating rows for each
occurrence. See Placement of Repeating Fields, page 3-15.

2. For each element in the group, enter the following syntax in the Short Description
field (Acrobat 5.0) or the Tooltip field (Acrobat 6.0):

<?rep_field="T1_Gn"?>

where n is the row number of the item on the template.

For example, the group in the sample report is laid out in three rows.

• For the fields belonging to the row that begins with "PO_LINE_NUM" enter

<?rep_field="T1_G1"?>

• For the fields belonging to the row that begins with "C_FLEX_ITEM_DISP" enter

<?rep_field="T1_G2"?>

• For the fields belonging to the row that begins with "C_SHIP_TO_ADDRESS"
enter

<?rep_field="T1_G3"?>

3-8 Oracle XML Publisher User’s Guide

The following graphic shows the entries for the Short Description/Tooltip field:

3. (Optional) Align your fields. To ensure proper alignment of a row of fields, it is
recommended that you use Adobe Acrobat’s alignment feature.

Adding Page Numbers and Page Breaks
This section describes how to add the following page-features to your PDF template:

• Page Numbers

• Page Breaks

Adding Page Numbers
To add page numbers, define a field in the template where you want the page number to
appear and enter an initial value in that field as follows:

1. Decide the position on the template where you want the page number to be
displayed.

2. Create a placeholder field called @pagenum@ (see Creating a Text Placeholder, page
3-5).

3. Enter a starting value for the page number in the Default field. If the XML data
includes a value for this field, the start value assigned in the template will be
overridden. If no start value is assigned, it will default to 1.

The figure below shows the Field Properties dialog for a page number field:

Creating a PDF Template 3-9

Adding Page Breaks
You can define a page break in your template to occur after a repeatable field. To insert
a page break after the occurrence of a specific field, add the following to the syntax in
the Short Description field of the Field Properties dialog box (use the Tooltip field for
Acrobat 6.0):

page_break="yes"

For example:

<?rep_field="T1_G3", page_break="yes"?>

The following example demonstrates inserting a page break in a template. The XML
sample contains salaries of employees by department:

<?xml version="1.0"?>
<! - Generated by Oracle Reports version 6.0.8.22.0 - >
<ROOT>
<LIST_G_DEPTNO>
<G_DEPTNO>
<DEPTNO>10</DEPTNO>
<LIST_G_EMPNO>
<G_EMPNO>
<EMPNO>7782</EMPNO>
<ENAME>CLARK</ENAME>
<JOB>MANAGER</JOB>
<SAL>2450</SAL>

</G_EMPNO>
<G_EMPNO>

3-10 Oracle XML Publisher User’s Guide

<EMPNO>7839</EMPNO>
<ENAME>KING</ENAME>
<JOB>PRESIDENT</JOB>
<SAL>5000</SAL>

</G_EMPNO>
<G_EMPNO>
<EMPNO>125</EMPNO>
<ENAME>KANG</ENAME>
<JOB>CLERK</JOB>
<SAL>2000</SAL>

</G_EMPNO>
<G_EMPNO>
<EMPNO>7934</EMPNO>
<ENAME>MILLER</ENAME>
<JOB>CLERK</JOB>
<SAL>1300</SAL>

</G_EMPNO>
<G_EMPNO>
<EMPNO>123</EMPNO>
<ENAME>MARY</ENAME>
<JOB>CLERK</JOB>
<SAL>400</SAL>

</G_EMPNO>
<G_EMPNO>
<EMPNO>124</EMPNO>
<ENAME>TOM</ENAME>
<JOB>CLERK</JOB>
<SAL>3000</SAL>

</G_EMPNO>
</LIST_G_EMPNO>
<SUMSALPERDEPTNO>9150</SUMSALPERDEPTNO>

</G_DEPTNO>

<G_DEPTNO>
<DEPTNO>30</DEPTNO>
<LIST_G_EMPNO>
.
.
.

</LIST_G_EMPNO>
<SUMSALPERDEPTNO>9400</SUMSALPERDEPTNO>

</G_DEPTNO>
</LIST_G_DEPTNO>
<SUMSALPERREPORT>29425</SUMSALPERREPORT>

</ROOT>
We want to report the salary information for each employee by department as shown in
the following template:

Creating a PDF Template 3-11

To insert a page break after each department, insert the page break syntax in the Short
Description (or Tooltip field) for the SUMSALPERDEPTNO field as follows:

<?rep_field="T1_G3", page_break="yes"?>
The Field Properties dialog box for the field is shown in the following figure:

Note that in order for the break to occur, the field must be populated with data from
the XML file.

The sample report with data is shown in the following figure:

3-12 Oracle XML Publisher User’s Guide

Performing Calculations
Adobe Acrobat provides a calculation function in the Field Properties dialog box. To
create a field to display a calculated total on your report:

1. Create a text field to display the calculated total. Give the field anyName you choose.

2. In the Field Properties dialog box, select the Format tab.

3. Select Number from the Category list.

4. Select the Calculate tab.

Creating a PDF Template 3-13

5. Select the radio button next to "Value is the operation of the following fields:"

6. Select sum from the drop down list.

7. Select the Pick... button and select the fields that you want totaled.

Completed PDF Template
The following figure shows the completed PDF template:

3-14 Oracle XML Publisher User’s Guide

Runtime Behavior

Placement of Repeating Fields
As already noted, the placement, spacing, and alignment of fields that you create on the
template are independent of the underlying form layout. At runtime, XML Publisher
places each repeating row of data according to calculations performed on the placement
of the rows of fields that you created, as follows:

First occurrence:

The first row of repeating fields will display exactly where you have placed them on
the template.

Second occurrence, single row:

To place the second occurrence of the group, XML Publisher calculates the distance
between the BODY_START tag and the first field of the first occurrence. The first field
of the second occurrence of the group will be placed this calculated distance below
the first occurrence.

Second occurrence, multiple rows:

If the first group contains multiple rows, the second occurrence of the group will be
placed the calculated distance below the last row of the first occurrence.

The distance between the rows within the group will be maintained as defined in the
first occurrence.

Overow Data
When multiple pages are required to accommodate the occurrences of repeating rows
of data, each page will display identically except for the defined repeating area, which
will display the continuation of the repeating data. For example, if the item rows of the
purchase order extend past the area defined on the template, succeeding pages will
display all data from the purchase order form with the continuation of the item rows.

Creating a Template from a Downloaded PDF
The steps for creating a template from a downloaded PDF are:

1. Register the Applications data source in the Template Manager.

2. Register the PDF form as a Template in the Template Manager.

3. Use the mapping feature to map the fields from the downloaded PDF form to
your data source.

PDF forms downloaded from third party sources may or may not contain the form fields
already defined. To determine if the form fields are defined, open the document in
Adobe Acrobat and select the Form Tool (in Acrobat 6.0, select the Text Field Tool). If
the form fields are defined, they will display in the document.

If the form fields are not defined, you must mark up the template. See Mark up the
Layout, page 3-4 for instructions on inserting placeholders and defining groups of
repeating fields.

If the form fields are defined, you are ready to upload the document to the Template
Manager for field mapping.

Creating a PDF Template 3-15

4
eText Templates

This chapter covers the following topics:

• Introduction

• Structure of eText Templates

• Constructing the Data Tables

• Setup Command Tables

• Expressions, Control Structure, and Functions

• Identifiers, Operators, and Literals

Introduction
An eText template is an RTF-based template that is used to generate text output for
Electronic Funds Transfer (EFT) and Electronic Data Interchange (EDI). At runtime, XML
Publisher applies this template to an input XML data file to create an output text file
that can be transmitted to a bank or other customer. Because the output is intended
for electronic communication, the eText templates must follow very specific format
instructions for exact placement of data.

Note: An EFT is an electronic transmission of financial data and
payments to banks in a specific fixed-position format flat file (text).

EDI is similar to EFT except it is not only limited to the transmission
of payment information to banks. It is often used as a method
of exchanging business documents, such as purchase orders and
invoices, between companies. EDI data is delimiter-based, and also
transmitted as a flat file (text).

Files in these formats are transmitted as flat files, rather than printed on paper. The
length of a record is often several hundred characters and therefore difficult to layout
on standard size paper.

To accommodate the record length, the EFT and EDI templates are designed using
tables. Each record is represented by a table. Each row in a table corresponds to a field in
a record. The columns of the table specify the position, length, and value of the field.

These formats can also require special handling of the data from the input XML
file. This special handling can be on a global level (for example, character replacement
and sequencing) or on a record level (for example, sorting). Commands to perform

eText Templates 4-1

these functions are declared in command rows. Global level commands are declared
in setup tables.

At runtime, XML Publisher constructs the output file according to the setup commands
and layout specifications in the tables.

Prerequisites
This section is intended for users who are familiar with EDI and EFT transactions
audience for this section preparers of eText templates will require both functional and
technical knowledge. That is, functional expertise to understand bank and country
specific payment format requirements and sufficient technical expertise to understand
XML data structure and eText specific coding syntax commands, functions, and
operations.

Structure of eText Templates
There are two types of eText templates: fixed-position based (EFT templates) and
delimiter-based (EDI templates). The templates are composed of a series of tables. The
tables define layout and setup commands and data field definitions. The required
data description columns for the two types of templates vary, but the commands and
functions available are the same. A table can contain just commands, or it can contain
commands and data fields.

The following graphic shows a sample from an EFT template to display the general
structure of command and data rows:

4-2 Oracle XML Publisher User’s Guide

Commands that apply globally, or commands that define program elements for the
template, are "setup" commands. These must be specified in the initial table(s) of the
template. Examples of setup commands are Template Type and Character Set.

In the data tables you provide the source XML data element name (or static data) and
the specific placement and formatting definitions required by the receiving bank or
entity. You can also define functions to be performed on the data and conditional
statements.

The data tables must always start with a command row that defines the "Level." The
Level associates the table to an element from the XML data file, and establishes the
hierarchy. The data fields that are then defined in the table for the Level correspond to
the child elements of the XML element.

The graphic below illustrates the relationship between the XML data hierarchy and
the template Level. The XML element "RequestHeader" is defined as the Level. The
data elements defined in the table ("FileID" and "Encryption") are children of the
RequestHeader element.

The order of the tables in the template determines the print order of the records. At
runtime the system loops through all the instances of the XML element corresponding to
a table (Level) and prints the records belonging to the table. The system then moves on
to the next table in the template. If tables are nested, the system will generate the nested
records of the child tables before moving on to the next parent instance.

Command Rows, Data Rows, and Data Column Header Rows
The following figure shows the placement of Command Rows, Data Rows, and Data
Column Header Rows:

eText Templates 4-3

Command rows are used to specify commands in the template. Command rows always
have two columns: command name and command parameter. Command rows do not
have column headings. The commands control the overall setup and record structures of
the template.

Blank rows can be inserted anywhere in a table to improve readability. Most often
they are used in the setup table, between commands. Blank rows are ignored by XML
Publisher when the template is parsed.

Data Column Header Rows
Data column headers specify the column headings for the data fields (such as
Position, Length, Format, Padding, and Comments). A column header row usually
follows the Level command in a table (or the sorting command, if one is used). The
column header row must come before any data rows in the table. Additional empty
column header rows can be inserted at any position in a table to improve readability. The
empty rows will be ignored at runtime.

The required data column header rows vary depending on the template type. See
Structure of the Data Row, page 4-9.

Data Rows
Data rows contain the data fields to correspond to the column header rows.

The content of the data rows varies depending on the template type. See Structure of
the Data Row, page 4-9.

4-4 Oracle XML Publisher User’s Guide

Constructing the Data Tables
The data tables contain a combination of command rows and data field rows. Each data
table must begin with a Level command row that specifies its XML element. Each record
must begin with a New Record command that specifies the start of a new record, and the
end of a previous record (if any).

The required columns for the data fields vary depending on the Template Type.

Command Rows
The command rows always have two columns: command name and command
parameter. The supported commands are:

• Level

• New record

• Sort ascending

• Sort descending

• Display condition

The usage for each of these commands is described in the following sections.

Level Command
The level command associates a table with an XML element. The parameter for the
level command is an XML element. The level will be printed once for each instance the
XML element appears in the data input file.

The level commands define the hierarchy of the template. For example, Payment XML
data extracts are hierarchical. A batch can have multiple child payments, and a payment
can have multiple child invoices. This hierarchy is represented in XML as nested child
elements within a parent element. By associating the tables with XML elements through
the level command, the tables will also have the same hierarchical structure.

Similar to the closing tag of an XML element, the level command has a companion
end-level command. The child tables must be defined between the level and end-level
commands of the table defined for the parent element.

An XML element can be associated with only one level. All the records belonging to a
level must reside in the table of that level or within a nested table belonging to that
level. The end-level command will be specified at the end of the final table.

Following is a sample structure of an EFT file record layout:

• FileHeaderRecordA

• BatchHeaderRecordA

• BatchHeaderRecordB

PaymentRecordA

PaymentRecordB

• InvoiceRecordA

• Batch FooterRecordC

• BatchFooterRecordD

eText Templates 4-5

• FileFooterRecordB

Following would be its table layout:

<LEVEL> RequestHeader

<NEW RECORD> FileHeaderRecordA

Data rows for the FileHeaderRecordA

<LEVEL> Batch

<NEW RECORD> BatchHeaderRecordA

Data rows for the BatchHeaderRecordA

<NEW RECORD> BatchHeaderRecordB

Data rows for the BatchHeaderRecordB

<LEVEL> Payment

<NEW RECORD> PaymentRecordA

Data rows for the PaymentRecordA

<NEW RECORD> PaymentRecordB

Data rows for the PaymentRecordB

<LEVEL> Invoice

<NEW RECORD> InvoiceRecordA

Data rows for the InvoiceRecordA

<END LEVEL> Invoice

<END LEVEL> Payment

<LEVEL> Batch

<NEW RECORD> BatchFooterRecordC

Data rows for the BatchFooterRecordC

<NEW RECORD> BatchFooterRecordD

Data rows for the BatchFooterRecordD

<END LEVEL> Batch

4-6 Oracle XML Publisher User’s Guide

<LEVEL> RequestHeader

<NEW RECORD> FileFooterRecordB

Data rows for the FileFooterRecordB

<END LEVEL> RequestHeader

Multiple records for the same level can exist in the same table. However, each table
can only have one level defined. In the example above, the BatchHeaderRecordA and
BatchHeaderRecordB are both defined in the same table. However, note that the END
LEVEL for the Payment must be defined in its own separate table after the child element
Invoice. The Payment END LEVEL cannot reside in the same table as the Invoice Level.

Note that you do not have to use all the levels from the data extract in your template. For
example, if an extract contains the levels: RequestHeader > Batch > Payment >
Invoice, you can use just the batch and invoice levels. However, the hierarchy of the
levels must be maintained.

The table hierarchy determines the order that the records are printed. For each parent
XML element, the records of the corresponding parent table are printed in the order they
appear in the table. The system loops through the instances of the child XML elements
corresponding to the child tables and prints the child records according to their specified
order. The system then prints the records of the enclosing (end-level) parent table, if any.

For example, given the EFT template structure above, assume the input data file contains
the following:

• Batch1

• Payment1

• Invoice1

• Invoice2

• Payment2

• Invoice1

• Batch2

• Payment1

• Invoice1

• Invoice2

• Invoice3

This will generate the following printed records:

eText Templates 4-7

Record Order Record Type Description

1 FileHeaderRecordA One header record for the EFT
file

2 BatchHeaderRecordA For Batch1

3 BatchHeaderRecordB For Batch1

4 PaymentRecordA For Batch1, Payment1

5 PaymentRecordB For Batch1, Payment1

6 InvoiceRecordA For Batch1, Payment1, Invoice1

7 InvoiceRecordA For Batch1, Payment1, Invoice2

8 PaymentRecordA For Batch1, Payment2

9 PaymentrecordB For Batch1, Payment2

10 InvoiceRecordA For Batch1, Payment2, Invoice1

11 BatchFooterRecordC For Batch1

12 BatchFooterRecordD For Batch1

13 BatchHeaderRecordA For Batch2

14 BatchHeaderRecordB For Batch2

15 PaymentRecordA For Batch2, Payment1

16 PaymentRecordB For Batch2, Payment1

17 InvoiceRecordA For Batch2, Payment1, Invoice1

18 InvoiceRecordA For Batch2, Payment1, Invoice2

19 InvoiceRecordA For Batch2, Payment1, Invoice3

20 BatchFooterRecordC For Batch2

21 BatchFooterRecordD For Batch2

22 FileFooterRecordB One footer record for the EFT
file

New Record Command
The new record command signifies the start of a record and the end of the previous
one, if any. Every record in a template must start with the new record command. The
record continues until the next new record command, or until the end of the table or
the end of the level command.

A record is a construct for the organization of the elements belonging to a level. The
record name is not associated with the XML input file.

A table can contain multiple records, and therefore multiple new record commands. All
the records in a table are at the same hierarchy level. They will be printed in the order
in which they are specified in the table.

4-8 Oracle XML Publisher User’s Guide

The new record command can have a name as its parameter. This name becomes the
name for the record. The record name is also referred to as the record type. The name can
be used in the COUNT function for counting the generated instances of the record. See
COUNT, page 4-21 function, for more information.

Consecutive new record commands (or empty records) are not allowed.

Sort Ascending and Sort Descending Commands
Use the sort ascending and sort descending commands to sort the instances of a
level. Enter the elements you wish to sort by in a comma-separated list. This is an
optional command. When used, it must come right after the (first) level command and it
applies to all records of the level, even if the records are specified in multiple tables.

Display Condition Command
The display condition command specifies when the enclosed record or data field
group should be displayed. The command parameter is a boolean expression. When
it evaluates to true, the record or data field group is displayed. Otherwise the record
or data field group is skipped.

The display condition command can be used with either a record or a group of data
fields. When used with a record, the display condition command must follow the
new record command. When used with a group of data fields, the display condition
command must follow a data field row. In this case, the display condition will apply to
the rest of the fields through the end of the record.

Consecutive display condition commands are merged as AND conditions. The merged
display conditions apply to the same enclosed record or data field group.

Structure of the Data Rows
The output record data fields are represented in the template by table rows. In
FIXED_POSITION_BASED templates, each row has the following attributes (or
columns):

• Position

• Length

• Format

• Pad

• Data

• Comments

The first five columns are required and must appear in the order listed.

For DELIMITER_BASED templates, each data row has the following attributes
(columns):

• Maximum Length

• Format

• Data

• Tag

• Comments

eText Templates 4-9

The first three columns are required and must be declared in the order stated.

In both template types, the Comments column is optional and ignored by the
system. You can insert additional information columns if you wish, as all columns after
the required ones are ignored.

The usage rules for these columns are as follows:

Position
Specifies the starting position of the field in the record. The unit is in number of
characters. This column is only used with FIXED_POSITION_BASED templates.

Length/Maximum Length
Specifies the length of the field. The unit is in number of characters. For
FIXED_POSITION_BASED templates, all the fields are fixed length. If the data is less
than the specified length, it is padded. If the data is longer, it is truncated. The truncation
always occurs on the right.

For DELIMITER_BASED templates, the maximum length of the field is specified. If
the data exceeds the maximum length, it will be truncated. Data is not padded if it is
less than the maximum length.

Format
Specifies the data type and format setting. There are three accepted data
types: Alpha, Number, and Date. Refer to Field Level Key Words, page 4-24 for their
usage.

Numeric data has two optional format settings: Integer and Decimal. Specify the
optional settings with the Number data type as follows:

• Number, Integer

• Number, Decimal

The Integer format uses only the whole number portion of a numeric value and discards
the decimal. The Decimal format uses only the decimal portion of the numeric value
and discards the integer portion.

The Date data type format setting must always be explicitly stated. The format setting
follows the SQL date styles, such as MMDDYY.

Some EDI (DELIMITER_BASED) formats use more descriptive data types. These are
mapped to the three template data types in the following table:

4-10 Oracle XML Publisher User’s Guide

ASC X12 Data Type Format Template Data Type

A - Alphabetic Alpha

AN -Alphanumeric Alpha

B - Binary Number

CD - Composite data element N/A

CH - Character Alpha

DT - Date Date

FS - Fixed-length string Alpha

ID - Identifier Alpha

IV - Incrementing Value Number

Nn - Numeric Number

PW - Password Alpha

R - Decimal number Numer

TM - Time Date

Pad
This applies to FIXED_POSITION_BASED templates only. Specify the padding side (L
= left or R = right) and the character. Both numeric and alphanumeric fields can be
padded. If this field is not specified, Numeric fields are left-padded with "0"; Alpha
fields are right-padded with spaces.

Example usage:

• To pad a field on the left with a "0", enter the following in the Pad column field:

L, ’0’

• To pad a field on the right with a space, enter the following the Pad column field:

R, ’ ’

Data
Specifies the XML element from the data extract that is to populate the field. The
data column can simply contain the XML tag name, or it can contain expressions and
functions. For more information, see Expressions, Control Structure, and Functions,
page 4-20.

Tag
Acts as a comment column for DELIMITER_BASED templates. It specifies the reference
tag in EDIFACT formats, and the reference IDs in ASC X12.

Comments
Use this column to note any free form comments to the template. Usually this column is
used to note the business requirement and usage of the data field.

eText Templates 4-11

Setup Command Tables

Setup Command Table
A template always begins with a table that specifies the setup commands. The setup
commands define global attributes, such as template type and output character set and
program elements, such as sequencing and concatenation.

The setup commands are:

• Template Type

• Output Character Set

• New Record Character

• Invalid Characters

• Replace Characters

• Define Level

• Define Sequence

• Define Concatenation

Some example setup tables are shown in the following figures:

4-12 Oracle XML Publisher User’s Guide

Template Type Command
This command specifies the type of template. There are two types: FIXED_POSITION_
BASED and DELIMITER_BASED.

Use the FIXED_POSITION_BASED templates for fixed-length record formats, such as
EFTs. In these formats, all fields in a record are a fixed length. If data is shorter than the
specified length, it will be padded. If longer, it will be truncated. The system specifies
the default behavior for data padding and truncation. Examples of fixed position based
formats are EFTs in Europe, and NACHA ACH file in the U.S.

In a DELIMITER_BASED template, data is never padded and only truncated when
it has reached a maximum field length. Empty fields are allowed (when the data is
null). Designated delimiters are used to separate the data fields. If a field is empty, two
delimiters will appear next to each other. Examples of delimited-based templates are
EDI formats such as ASC X12 820 and UN EDIFACT formats - PAYMUL, DIRDEB, and
CREMUL.

In EDI formats, a record is sometimes referred to as a segment. An EDI segment is
treated the same as a record. Start each segment with a new record command and give it
a record name. You should have a data field specifying the segment name as part of the
output data immediately following the new record command.

eText Templates 4-13

For DELIMITER_BASED templates, you insert the appropriate data field delimiters in
separate rows between the data fields. After every data field row, you insert a delimiter
row. You can insert a placeholder for an empty field by defining two consecutive
delimiter rows.

Empty fields are often used for syntax reasons: you must insert placeholders for empty
fields so that the fields that follow can be properly identified.

There are different delimiters to signify data fields, composite data fields, and end of
record. Some formats allow you to choose the delimiter characters. In all cases you
should use the same delimiter consistently for the same purpose to avoid syntax errors.

In DELIMITER_BASED templates, the <POSITION> and <PAD> columns do not
apply. They are omitted from the data tables.

Some DELIMITER_BASED templates have minimum and maximum length
specifications. In those cases Oracle Payments validates the length.

Dene Level Command
Some formats require specific additional data levels that are not in the data extract. For
example, some formats require that payments be grouped by payment date. Using the
Define Level command, a payment date group can be defined and referenced as a level
in the template, even though it is not in the input extract file.

When you use the Define Level command you declare a base level that exists in the
extract. The Define Level command inserts a new level one level higher than the base
level of the extract. The new level functions as a grouping of the instances of the base
level.

The Define Level command is a setup command, therefore it must be defined in the
setup table. It has two subcommands:

• Base Level Command - defines the level (XML element) from the extract that the
new level is based on. The Define Level command must always have one and only
one base level subcommand.

Grouping Criteria - defines the XML extract elements that are used to group the
instances of the base level to form the instances of the new level. The parameter of
the grouping criteria command is a comma-separated list of elements that specify
the grouping conditions.

The order of the elements determines the hierarchy of the grouping. The instances
of the base level are first divided into groups according to the values of the first
criterion, then each of these groups is subdivided into groups according to the
second criterion, and so on. Each of the final subgroups will be considered as an
instance of the new level.

For example, the following table shows five payments under a batch:

4-14 Oracle XML Publisher User’s Guide

Payment Instance PaymentDate (grouping
criterion 1)

PayeeName (grouping
criterion 2)

Payment1 PaymentDate1 PayeeName1

Payment2 PaymentDate2 PayeeName1

Payment3 PaymentDate1 PayeeName2

Payment4 PaymentDate1 PayeeName1

Payment5 PaymentDate1 PayeeName3

In the template, construct the setup table as follows to create a level called
"PaymentsByPayDatePayee" from the base level "Payment" grouped according to
PaymentDate and Payee Name:

<DEFINE LEVEL> PaymentsByPayDatePayee

<BASE LEVEL> Payment

<GROUPING CRITERIA> PaymentDate, PayeeName

<END DEFINE LEVEL> PaymentsByPayDatePayee

The five payments will generate the following four groups (instances) for the new level:

Payment Group Instance Group Criteria Payments in Group

Group1 PaymentDate1, PayeeName1 Payment1, Payment4

Group2 PaymentDate1, PayeeName2 Payment3

Group3 PaymentDate1, PayeeName3 Payment5

Group4 PaymentDate2, PayeeName1 Payment2

The order of the new instances is the order that the records will print. When evaluating
the multiple grouping criteria to form the instances of the new level, the criteria can be
thought of as forming a hierarchy. The first criterion is at the top of the hierarchy, the last
criterion is at the bottom of the hierarchy.

Generally there are two kinds of format-specific data grouping scenarios in EFT
formats. Some formats print the group records only; others print the groups with the
individual element records nested inside groups. Following are two examples for these
scenarios based on the five payments and grouping conditions previously illustrated.

Example
First Scenario: Group Records Only

EFT File Structure:

• BatchRec

• PaymentGroupHeaderRec

• PaymentGroupFooterRec

eText Templates 4-15

Record Sequence Record Type Description

1 BatchRec

2 PaymentGroupHeaderRec For group 1 (PaymentDate1, PayeeName1)

3 PaymentGroupFooterRec For group 1 (PaymentDate1, PayeeName1)

4 PaymentGroupHeaderRec For group 2 (PaymentDate1, PayeeName2)

5 PaymentGroupFooterRec For group 2 (PaymentDate1, PayeeName2)

6 PaymentGroupHeaderRec For group 3 (PaymentDate1, PayeeName3)

7 PaymentGroupFooterRec For group 3 (PaymentDate1, PayeeName3)

8 PaymentGroupHeaderRec For group 4 (PaymentDate2, PayeeName1)

9 PaymentGroupFooterRec For group 4 (PaymentDate2, PayeeName1)

Example
Scenario 2: Group Records and Individual Records

EFT File Structure:

BatchRec

• PaymentGroupHeaderRec

• PaymentRec

• PaymentGroupFooterRec

Generated output:

4-16 Oracle XML Publisher User’s Guide

Record Sequence Record Type Description

1 BatchRec

2 PaymentGroupHeaderRec For group 1 (PaymentDate1, PayeeName1)

3 PaymentRec For Payment1

4 PaymentRec For Payment4

5 PaymentGroupFooterRec For group 1 (PaymentDate1, PayeeName1)

6 PaymentGroupHeaderRec For group 2 (PaymentDate1, PayeeName2)

7 PaymentRec For Payment3

8 PaymentGroupFooterRec For group 2 (PaymentDate1, PayeeName2)

9 PaymentGroupHeaderRec For group 3 (PaymentDate1, PayeeName3)

10 PaymentRec For Payment5

11 PaymentGroupFooterRec For group 3 (PaymentDate1, PayeeName3)

12 PaymentGroupHeaderRec For group 4 (PaymentDate2, PayeeName1)

13 PaymentRec For Payment2

14 PaymentGroupFooterRec For group 4 (PaymentDate2, PayeeName1)

Once defined with the Define Level command, the new level can be used in the template
in the same manner as a level occurring in the extract. However, the records of the new
level can only reference the base level fields that are defined in its grouping criteria. They
cannot reference other base level fields other than in summary functions.

For example, the PaymentGroupHeaderRec can reference the PaymentDate and
PayeeName in its fields. It can also reference thePaymentAmount (a payment level field)
in a SUM function. However, it cannot reference other payment level fields, such as
PaymentDocName or PaymentDocNum.

The Define Level command must always have one and only one grouping criteria
subcommand. The Define Level command has a companion end-define level
command. The subcommands must be specified between the define level and end-define
level commands. They can be declared in any order.

Dene Sequence Command
The define sequence command define a sequence that can be used in conjunction with
the SEQUENCE_NUMBER function to index either the generated EFT records or the
extract instances (the database records). The EFT records are the physical records
defined in the template. The database records are the records from the extract. To avoid
confusion, the term "record" will always refer to the EFT record. The database record
will be referred to as an extract element instance or level.

The define sequence command has four subcommands: reset at level, increment
basis, start at, and maximum:

Reset at Level
The reset at level subcommand defines where the sequence resets its starting number. It
is a mandatory subcommand. For example, to number the payments in a batch, define

eText Templates 4-17

the reset at level as Batch. To continue numbering across batches, define the reset level
as RequestHeader.

In some cases the sequence is reset outside the template. For example, a periodic
sequence may be defined to reset by date. In these cases, the PERIODIC_SEQUENCE
keyword is used for the reset at level. The system saves the last sequence number used
for a payment file to the database. Outside events control resetting the sequence in the
database. For the next payment file run, the sequence number is extracted from the
database for the start at number (see start at subcommand).

Increment Basis
The increment basis subcommand specifies if the sequence should be incremented
based on record or extract instances. The allowed parameters for this subcommand
are RECORD and LEVEL.

Enter RECORD to increment the sequence for every record.

Enter LEVEL to increment the sequence for every new instance of a level.

Note that for levels with multiple records, if you use the level-based increment all the
records in the level will have the same sequence number. The record-based increment
will assign each record in the level a new sequence number.

For level-based increments, the sequence number can be used in the fields of one level
only. For example, suppose an extract has a hierarchy of batch > payment > invoice and
you define the increment basis by level sequence, with reset at the batch level. You can
use the sequence in either the payment or invoice level fields, but not both. You cannot
have sequential numbering across hierarchical levels.

However, this rule does not apply to increment basis by record sequences. Records
can be sequenced across levels.

For both increment basis by level and by record sequences, the level of the sequence is
implicit based on where the sequence is defined.

Dene Concatenation Command
Use the define concatenation command to concatenate child-level extract elements for
use in parent-level fields. For example, use this command to concatenate invoice number
and due date for all the invoices belonging to a payment for use in a payment-level field.

The define concatenation command has three subcommands: base level, element, and
delimiter.

Base Level Subcommand
The base level subcommand specifies the child level for the operation. For each
parent-level instance, the concatenation operation loops through the child-level instances
to generate the concatenated string.

Item Subcommand
The item subcommand specifies the operation used to generate each item. An item is a
child-level expression that will be concatenated together to generate the concatenation
string.

Delimiter Subcommand
The delimiter subcommand specifies the delimiter to separate the concatenated items
in the string.

4-18 Oracle XML Publisher User’s Guide

Using the SUBSTR Function
Use the SUBSTR function to break down concatenated strings into smaller strings that
can be placed into different fields. For example, the following table shows five invoices
in a payment:

Invoice InvoiceNum

1 car_parts_inv0001

2 car_parts_inv0002

3 car_parts_inv0003

4 car_parts_inv0004

5 car_parts_inv0005

Using the following concatenation definition:

<DEFINE CONCATENATION> ConcatenatedInvoiceInfo

<BASE LEVEL> Invoice

<ELEMENT> InvoiceNum

<DELIMITER> ’,’

<END DEFINE CONCATENATION> ConcatenatedInvoiceInfo

You can reference ConcatenatedInvoiceInfo in a payment level field. The string will be:

car_parts_inv0001,car_parts_inv0002,car_parts_inv0003,car_parts_
inv0004,car_parts_inv0005

If you want to use only the first forty characters of the concatenated invoice info, use
either TRUNCATE function or the SUBSTR function as follows:

TRUNCATE(ConcatenatedInvoiceInfo, 40)

SUBSTR(ConctenatedInvoiceInfo, 1, 40)

Either of these statements will result in:

car_parts_inv0001,car_parts_inv0002,car_

To isolate the next forty characters, use the SUBSTR function:

SUBSTR(ConcatenatedInvoiceInfo, 41, 40)

to get the following string:

parts_inv0003,car_parts_inv0004,car_par

Invalid Characters and Replacement Characters Commands
Some formats require a different character set than the one that was used to enter the
data in Oracle Applications. For example, some German formats require the output
file in ASCII, but the data was entered in German. If there is a mismatch between the
original and target character sets you can define an ASCII equivalent to replace the
original. For example, you would replace the German umlauted "a" with "ao".

eText Templates 4-19

Some formats will not allow certain characters. To ensure that known invalid characters
will not be transmitted in your output file, use the invalid characters command to flag
occurrences of specific characters.

To use the replacement characters command, specify the source characters in the left
column and the replacement characters in the right column. You must enter the source
characters in the original character set. This is the only case in a format template in
which you use a character set not intended for output. Enter the replacement characters
in the required output character set.

For DELIMITER_BASED formats, if there are delimiters in the data, you can use the
escape character "?" to retain their meaning. For example,

First name?+Last name equates to Fist name+Last name

Which source?? equates to Which source?

Note that the escape character itself must be escaped if it is used in data.

The replacement characters command can be used to support the escape character
requirement. Specify the delimiter as the source and the escape character plus the
delimiter as the target. For example, the command entry for the preceding examples
would be:

<REPLACEMENT CHARACTERS>

+ ?+

? ??

<END REPLACEMENT CHARACTERS>

The invalid character command has a single parameter that is a string of invalid
characters that will cause the system to error out.

The replacement character process is performed before or during the character set
conversion. The character set conversion is performed on the XML extract directly, before
the formatting. After the character set conversion, the invalid characters will be checked
in terms of the output character set. If no invalid characters are found, the system will
proceed to formatting.

Output Character Set and New Record Character Commands
Use the new record character command to specify the character(s) to delimit the explicit
and implicit record breaks at runtime. Each new record command represents an explicit
record break. Each end of table represents an implicit record break. The parameter is a
list of constant character names separated by commas.

Some formats contain no record breaks. The generated output is a single line of data. In
this case, leave the new record character command parameter field empty.

Expressions, Control Structure, and Functions
This section describes the rules and usage for expressions in the template. It also
describes supported control structures and functions.

4-20 Oracle XML Publisher User’s Guide

Expressions
Expressions can be used in the data column for data fields and some command
parameters. An expression is a group of XML extract fields, literals, functions, and
operators. Expressions can be nested. An expression can also include the "IF" control
structure. When an expression is evaluated it will always generate a result. Side effects
are not allowed for the evaluation. Based on the evaluation result, expressions are
classified into the following three categories:

• Boolean Expression - an expression that returns a boolean value, either true or
false. This kind expression can be used only in the "IF-THEN-ELSE" control structure
and the parameter of the display condition command.

• Numeric Expression - an expression that returns a number. This kind of expression
can be used in numeric data fields. It can also be used in functions and commands
that require numeric parameters.

• Character Expression - an expression that returns an alphanumeric string. This kind
of expression can be used in string data fields (format type Alpha). They can also be
used in functions and command that require string parameters.

Control Structures
The only supported control structure is "IF-THEN-ELSE". It can be used in an
expression. The syntax is:

IF <boolean_expressionA> THEN
<numeric or character expression1>

[ELSIF <boolean_expressionB THEN
<numeric or character expression2>]

...
[ELSE

<numeric or character expression2]
END IF
Generally the control structure must evaluate to a number or an alphanumeric
string. The control structure is considered to a numeric or character expression. The
ELSIF and ELSE clauses are optional, and there can be as many ELSIF clauses as
necessary. The control structure can be nested.

Functions
Following is the list of supported functions:

• SEQUENCE_NUMBER - is a record element index. It is used in conjunction with the
Define Sequence command. It has one parameter, which is the sequence defined by
the Define Sequence command. At runtime it will increase its sequence value by one
each time it is referenced in a record.

• COUNT - counts the child level extract instances or child level records of a specific
type. Declare the COUNT function on a level above the entity to be counted. The
function has one argument. If the argument is a level, the function will count all the
instances of the (child) level belonging to the current (parent) level instance.

For example, if the level to be counted is Payment and the current level is Batch, then
the COUNT will return the total number of payments in the batch. However, if
the current level is RequestHeader, the COUNT will return the total number
of payments in the file across all batches. If the argument is a record type, the
count function will count all the generated records of the (child level) record type
belonging to the current level instance.

eText Templates 4-21

• INTEGER_PART, DECIMAL_PART - returns the integer or decimal portion of
a numeric value. This is used in nested expressions and in commands (display
condition and group by). For the final formatting of a numeric field in the data
column, use the Integer/Decimal format.

• IS_NUMERIC - boolean test whether the argument is numeric. Used only with
the "IF" control structure.

• TRUNCATE - truncate the first argument - a string to the length of the second
argument. If the first argument is shorter than the length specified by the second
argument, the first argument is returned unchanged. This is a user-friendly version
for a subset of the SQL substr() functionality.

• SUM - sums all the child instance of the XML extract field argument. The field must
be a numeric value. The field to be summed must always be at a lower level than the
level on which the SUM function was declared.

• MIN, MAX - find the minimum or maximum of all the child instances of the XML
extract field argument. The field must be a numeric value. The field to be operated
on must always be at a lower level than the level on which the function was declared.

• Other SQL functions: TO_DATE, LOWER, UPPER, LENGTH, GREATEST, LEAST
- use the syntax corresponding to the SQL function.

Identiers, Operators, and Literals
This section lists the reserved key word and phrases and their usage. The supported
operators are defined and the rules for referencing XML extract fields and using literals.

Key Words
There are four categories of key words and key word phrases:

• Command and column header key words

• Command parameter and function parameter key words

• Field-level key words

• Expression key words

Command and Column Header Key Words
The following key words must be used as shown: enclosed in <>s and in all capital
letters with a bold font.

• <LEVEL> - the first entry of a data table. Associates the table with an XML element
and specifies the hierarchy of the table.

• <END LEVEL> - declares the end of the current level. Can be used at the end of a
table or in a standalone table.

• <POSITION> - column header for the first column of data field rows, which specifies
the starting position of the data field in a record.

• <LENGTH> - column header for the second column of data field rows, which
specifies the length of the data field.

• <FORMAT> - column header for the third column of data field rows, which specifies
the data type and format setting.

4-22 Oracle XML Publisher User’s Guide

• <PAD> - column header for the fourth column of data field rows, which specifies the
padding style and padding character.

• <DATA> - column header for the fifth column of data field rows, which specifies
the data source.

• <COMMENT> - column header for the sixth column of data field rows, which
allows for free form comments.

• <NEW RECORD> - specifies a new record.

• <DISPLAY CONDITION> - specifies the condition when a record should be printed.

• <TEMPLATE TYPE> - specifies the type of the template, either FIXED_POSITION_
BASED or DELIMITER_BASED.

• <OUTPUT CHARACTER SET> - specifies the character set to be used when
generating the output.

• <NEW RECORD CHARACTER> - specifies the character(s) to use to signify the
explicit and implicit new records at runtime.

• <DEFINE LEVEL> - defines a format-specific level in the template.

• <BASE LEVEL> - subcommand for the define level and define concatenation
commands.

• <GROUPING CRITERIA> - subcommand for the define level command.

• <END DEFINE LEVEL> - signifies the end of a level.

• <DEFINE SEQUENCE> - defines a record or extract element based sequence for use
in the template fields.

• <RESET AT LEVEL> - subcommand for the define sequence command.

• <INCREMENT BASIS> - subcommand for the define sequence command.

• <START AT> - subcommand for the define sequence command.

• <MAXIMUM> - subcommand for the define sequence command.

• <MAXIMUM LENGTH> - column header for the first column of data field
rows, which specifies the maximum length of the data field. For DELIMITER_BASED
templates only.

• <END DEFINE SEQUENCE> - signifies the end of the sequence command.

• <DEFINE CONCATENATION> - defines a concatenation of child level item that can
be referenced as a string the parent level fields.

• <ELEMENT> - subcommand for the define concatenation command.

• <DELIMITER> - subcommand for the define concatenation command.

• <END DEFINE CONCATENATION> - signifies the end of the define concatenation
command.

• <SORT ASCENDING> - format-specific sorting for the instances of a level.

• <SORT DESCENDING> - format-specific sorting for the instances of a level.

Command Parameter and Function Parameter Key Words
These key words must be entered in all capital letters, nonbold fonts.

eText Templates 4-23

• PERIODIC_SEQUENCE - used in the reset at level subcommand of the define
sequence command. It denotes that the sequence number is to be reset outside the
template.

• FIXED_POSITION_BASED, DELIMITER_BASED - used in the template type
command, specifies the type of template.

• RECORD, LEVEL - used in the increment basis subcommand of the define sequence
command. RECORD increments the sequence each time it is used in a new
record. LEVEL increments the sequence only for a new instance of the level.

Field-Level Key Words
• Alpha - in the <FORMAT> column, specifies the data type is alphanumeric.

• Number - in the <FORMAT> column, specifies the data type is numeric.

• Integer - in the <FORMAT> column, used with the Number key word. Takes the
integer part of the number. This has the same functionality as the INTEGER
function, except the INTEGER function is used in expressions, while the Integer key
word is used in the <FORMAT> column only.

• Decimal - in the <FORMAT> column, used with the Number key word. Takes the
decimal part of the number. This has the same functionality as the DECIMAL
function, except the DECIMAL function is used in expressions, while the Decimal
key word is used in the <FORMAT> column only.

• Date - in the <FORMAT> column, specifies the data type is date.

• L, R- in the <PAD> column, specifies the side of the padding (Left or Right).

Expression Key Words
Key words and phrases used in expressions must be in capital letters and bold fonts.

• IF THEN ELSE IF THEN ELSE END IF - these key words are always used as a
group. They specify the "IF" control structure expressions.

• IS NULL, IS NOT NULL - these phrases are used in the IF control structure. They
form part of boolean predicates to test if an expression is NULL or not NULL.

Operators
There are two groups of operators: the boolean test operators and the expression
operators. The boolean test operators include: "=", "<>", "<", ">", ">=", and
"<=". They can be used only with the IF control structure. The expression operators
include: "()", "||", "+", "-", and "*". They can be used in any expression.

4-24 Oracle XML Publisher User’s Guide

Symbol Usage

= Equal to test. Used in the IF control structure
only.

<> Not equal to test. Used in the IF control
structure only.

> Greater than test. Used in the IF control
structure only.

< Less than test. Used in the IF control structure
only.

>= Greater than or equal to test. Used in the IF
control structure only.

<= Less than or equal to test. Used in the IF control
structure only.

() Function argument and expression group
delimiter. The expression group inside "()" will
always be evaluated first. "()" can be nested.

|| String concatenation operator.

+ Addition operator. Implicit type conversion
may be performed if any of the operands are
not numbers.

- Subtraction operator. Implicit type conversion
may be performed if any of the operands are
not numbers.

* Multiplication operator. Implicit type
conversion may be performed if any of the
operands are not numbers.

DIV Division operand. Implicit type conversion
may be performed if any of the operands are
not numbers. Note that "/" is not used because
it is part of the XPATH syntax.

Reference to XML Extract Fields and XPATH Syntax
XML elements can be used in any expression. At runtime they will be replaced with the
corresponding field values. The field names are case-sensitive.

When the XML extract fields are used in the template, they must follow the XPATH
syntax. This is required so that the XML Publisher engine can correctly interpret the
XML elements.

There is always an extract element considered as the context element during the
XML Publisher formatting process. When XML Publisher processes the data rows
in a table, the level element of the table is the context element. For example, when
XML Publisher processes the data rows in the Payment table, Payment is the context
element. The relative XPATH you use to reference the extract elements are specified
in terms of the context element.

For example if you need to refer to the PayeeName element in a Payment data table, you
will specify the following relative path:

eText Templates 4-25

Payee/PayeeInfo/PayeeName

Each layer of the XML element hierarchy is separated by a backslash “/”. You use this
notation for any nested elements. The relative path for the immediate child element of
the level is just the element name itself. For example, you can use TransactionID element
name as is in the Payment table.

To reference a parent level element in a child level table, you can use the “../”
notation. For example, in the Payment table if you need to reference the BatchName
element, you can specify ../BatchName. The “../” will give you Batch as the context; in
that context you can use the BatchName element name directly as BatchName is an
immediate child of Batch. This notation goes up to any level for the parent elements. For
example if you need to reference the RequesterParty element (in the RequestHeader)
in a Payment data table, you can specify the following:

../../TrxnParties/RequesterParty

You can always use the absolute path to reference any extract element anywhere
in the template. The absolute path starts with a backslash “/”. For the PayeeName
in the Payment table example above, you will have the following absolute
path: /BatchRequest/Batch/Payment/Payee/PayeeInfo/PayeeName

The absolute path syntax provides better performance.

The identifiers defined by the setup commands such as define level, define sequence
and define concatenation are considered to be global. They can be used anywhere in
the template. No absolute or relative path is required. The base level and reset at level
for the setup commands can also be specified. XML Publisher will be able to find the
correct context for them.

If you use relative path syntax, you should specify it relative to the base levels in the
following commands:

• The element subcommand of the define concatenation command

• The grouping criteria subcommand of the define level command

The extract field reference in the start at subcommand of the define sequence command
should be specified with an absolute path.

The rule to reference an extract element for the level command is the same as the rule
for data fields. For example, if you have a Batch level table and a nested Payment level
table, you can specify the Payment element name as-is for the Payment table. Because
the context for evaluating the Level command of the Payment table is the Batch.

However, if you skip the Payment level and you have an Invoice level table directly
under the Batch table, you will need to specify Payment/Invoice as the level element
for the Invoice table.

The XPATH syntax required by the template is very similar to UNIX/LINUX directory
syntax. The context element is equivalent to the current directory. You can specify a file
relative to the current directory or you can use the absolute path which starts with a “/”.

Finally, the extract field reference as the result of the grouping criteria sub-command
of the define level command must be specified in single quotes. This tells the XML
Publisher engine to use the extract fields as the grouping criteria, not their values.

4-26 Oracle XML Publisher User’s Guide

5
Using the Template Manager

This chapter pertains to Oracle E-Business Suite installations only.

This chapter covers the following topics:

• Introduction

• Creating the Data Definition

• Creating the Template

• Viewing and Updating a Template

• Translatable Templates

Introduction
The Template Manager is the management tool for your templates and data definitions.

Important: The Template Manager is available with the Oracle
E-Business Suite installation only.

Use the Template Manager to:

• Register, view, and update your templates.

• Maintain data definitions for the data sources that are merged with the templates.

• Create and maintain the mapping between PDF form fields and XML elements.

• Export and upload XLIFF files for translation.

• Preview your template with sample data.

To create a template in the Template Manager:

1. Create the data definition for your template, page 5-2.

2. Register the layout template file, page 5-4.

Accessing the Template Manager
Access the Template Manager from the XML Publisher Administrator
responsibility. Select Templates to search for or create a template. Select Data
Definitions to search for or create a data definition.

Using the Template Manager 5-1

Creating the Data Denition
When you create the data definition, you register the source of the data that will be
merged with your template layout to create your published report. When you register
your template layout file, you must assign it a data definition that exists in the Template
Manager. This associates the two at runtime. Multiple templates can use the same data
definition.

To navigate to the Create Data Definition page:

Select the Data Definitions tab, then select the Create Data Definition button.

Name
Enter a user-friendly name for your data definition.

Code
If you are using the Oracle Applications concurrent manager to generate your report, the
data definition Code must match the concurrent program short name of the report
program (for example, RAXCUS for the Customer Listing Summary). This enables the
concurrent manager to locate the templates available for the report concurrent program
when you submit the request.

Application
Select the report’s application from the LOV.

Start Date
Enter the date from which the data definition will be active.

XML Schema
You must supply XML Schema if both of the following conditions are applicable:

• This data definition will be assigned to a PDF template.

• The PDF template will require field mapping.

5-2 Oracle XML Publisher User’s Guide

A PDF template requires mapping if the template form field names (placeholders) do
not match the data element tag names of the XML file.

Use the Browse button to upload the XML Schema from a saved location.

Note: The W3C XML Schema Recommendation defines a standardized
language for specifying the structure, content, and certain semantics
of a set of XML documents. An XML schema can be considered
metadata that describes a class of XML documents. The XML Schema
recommendation is described at: http://www.w3.org/TR/xmlschema-0/

For more information, see Oracle XML DB Developer’s Guide 10g.

End Date
You cannot delete data definitions from the Template Manager. To make the data
definition inactive, enter an end date.

Preview Data
To use the report Preview feature of the Template Manager, upload a sample XML file
from the data source. The Preview feature is available from the View Template page,
page 5-6 and also at runtime from the Oracle Applications request submission interface.

Data Template
If you are using an XML Publisher data template to generate the data for this data
definition, enter the file location, or use the Browse button to upload your data
template. If you are using a concurrent program to generate the data, leave this field
blank. For information on creating data templates, see Data Templates, page 9-1 .

After the data definition is created, all the fields are updateable except Application
and Code.

Viewing and Updating a Data Denition
To view an existing data definition:

1. Search for the data definition from the Data Definitions tab.

2. From the search results, select the data definition Name to launch the View Data
Definition page.

Access the Update Data Definition page by performing either of the following:

• Select the Update icon from the search results region.

• Select the Update button from the View Data Definition page.

From the Update Data Definition page, all fields are updateable except Application
and Code. For information on the updateable fields, see Creating the Data Definition,
page 5-2.

Setting Runtime Properties for a Data Denition
You can set runtime configuration properties that are specific to a data definition. To
update or assign properties to this data definition, select the Edit Configuration
button. Property values set at the Data Definition level take precedence over values set
at the Site level, but will be superseded by values set at the Template level. For a full
description of the properties, see Setting Configuration Properties, page 8-2.

Using the Template Manager 5-3

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Creating the Template
When you create a template, you assign it a data definition and upload your template
layout files. Assigning the data definition makes the template available to the
corresponding data source at runtime.

At initial creation, you upload one template file for a specific language and territory
combination. This file will become the Default Template File (see Default Template File,
page 5-5). To upload additional template files or to change the Default Template File, use
the View Template page (see Viewing and Updating a Template, page 5-6).

If your template type is PDF, the Template Mapping region will display after you click
the Apply button. See Template Mapping, page 5-5.

To navigate to the Create Template page:

Select the Templates tab, then select the Create Template button. To copy an existing
template, see Copying a Template, page 5-6.

Name
Enter a user-friendly name for your template.

Code
Assign a template code using the product short name and a descriptive ending.

Application
Select the report’s Application.

Data Denition
Select your report’s data definition. The data definitionmust already exist in the Template
Manager. To register the data definition, see Creating the Data Definition, page 5-2.

5-4 Oracle XML Publisher User’s Guide

Type
Select the file type of the template. Valid template file types are: eText - Inbound, eText
- Outbound, PDF, RTF, XSL-FO, XSL-HTML, XSL-TEXT, and XSL-XML.

Start Date
Enter the date from which the template will be active.

End Date
To make the template inactive, enter an end date.

Subtemplate
If this is a subtemplate, select "Yes" from the drop list.

A subtemplate is referenced by other templates, but cannot be run on its own.

File
Use the Browse button to upload your template layout file.

Language
Select the template language.

Add more language template files to your template definition from the View Template
page. See Adding Templates for Additional Languages, page 5-8.

Territory
Select the language territory.

Translatable (check box)
Select this check box if you want this template to be translatable. Only RTF templates are
translatable. For more information see Translatable Templates, page 5-9.

After the template definition is created, the following fields are not
updateable: Application, Code, and Type. Update the template from theView Template
page.

The Default Template
When you submit the XML Publisher concurrent request, you are prompted to specify
the language and territory of the template that you wish to apply to the report data. If
you do not select the language and territory, XML Publisher will use a template that
corresponds to your session language and territory. If your session language and
territory combination do not represent an available template, XML Publisher will use the
Default Template to publish the report.

When you create the Template definition in the Template Manager, the original template
file you upload becomes the Default Template. You can change the Default Template
from the View Template page by choosing Update.

PDF Template Mapping
If your template type is PDF, the Template Mapping region displays after you select
Apply. If you named the placeholders on the PDF template according to their
corresponding XML element names, no mapping is required.

If you did not name the PDF placeholders according to the XML element names (or if you
are using a third-party PDF template that already contained named placeholders), you
must map each template field name to its corresponding XML element. You must have
loaded the XML schema to the template’s corresponding Data Definition to make the
XML element names available to the Template Manager’s mapping tool.

Using the Template Manager 5-5

To perform mapping, select the Enable Mapping button to launch the Update Mapping
page. See Mapping PDF Template Fields, page 5-8.

For information on creating placeholders in the PDF template, see Creating a Placeholder,
page 3-5.

Copying a Template
Use the Search region to find the template you wish to copy. From the search results
table, select the Duplicate icon for the template to launch the Copy Template page.

Code
Assign a template Code using the product short name and a descriptive ending.

Name
Enter a user-friendly name for your template.

Application
Select the report’s application from the LOV.

Source Template Name
(Not updateable) Displays the name of the template that you are duplicating.

Viewing and Updating a Template
Navigate to the View Template page:

1. Search for your template from the Templates page.

2. Select the template Name from the search results region.

5-6 Oracle XML Publisher User’s Guide

From the View Template page, you can:

• Update the general definitions, page 5-7

• Preview the template, page 5-7

• Download the template file, page 5-7

• Update the template file for editing, page 5-7

• Add localized template files for additional languages, page 5-8

• Export the XLIFF file for translation of translatable templates (RTF templates only),
page 5-9

• Upload the translated XLIFF files (RTF templates only), page 5-12

• Enable or Disable available translations (RTF templates only), page 5-12

• Update the template field mapping (PDF templates only), page 5-8

• Set runtime properties for a template, page 5-9

Note: Seeded templates cannot be updated or deleted. The Update and
Delete icons for these templates are disabled. If you wish to modify a
seeded template, Duplicate, page 5-6 it, then modify the template file
of the duplicated entry. You can then End Date the seeded template if
you do not want it to be available to your users.

Updating the Template General Denitions
Select the Update button to update the general definitions of a template. (You cannot
update the Template Code, Template Type, or Application.) For information on the
updateable fields, see Creating the Template, page 5-6.

Previewing a Template
If you uploaded a preview data file for your data definition, the Preview feature will
merge this data file with the selected template to allow you to immediately view a
sample of the report within the Template Manager.

Select the Preview Format and then select the Preview icon next to the template file that
you wish to preview. XML Publisher automatically generates a preview of your report in
the format selected (PDF templates can only be viewed in PDF format).

Editing the Template Layout
To edit the layout file of a template:

1. Select the Download icon to save the template file to your local file system.

2. Edit the file using your desktop application and save it in the appropriate format.

For guidelines on creating template files, see Creating an RTF Template, page 2-1
or Creating a PDF Template, page 3-1.

3. Select the Update icon.

4. The Add File page prompts you to Browse for and select your edited file.

5. Select the Apply button to upload the edited file to the Template Manager.

Using the Template Manager 5-7

Adding Localized Templates for Additional Languages
After you have created a template definition, you can add translated template files to
support additional languages.

Use this feature when your translated template requires a different layout or adjustments
to the layout. Otherwise, use the Translatable Template feature, which allows the export
and upload of the translatable strings within the template. See Translatable Templates,
page 5-9.

1. Select the Add File button.

2. Browse for or type in the location of the template file.

3. Select the Language for this template file from the LOV.

4. Select the Territory for this template file from the LOV.

Mapping PDF Template Fields
Select the Enable Mapping button to map the PDF template fields to the data source
fields.

On the Update Mapping page, the Template Field Name column displays the names
assigned to the form fields on the PDF template. The Data Source Element column
displays a drop down list that contains all the element names from the XML schema you
supplied when you created the data definition. Select the appropriate data element from
the drop down list for each template field.

Note: Do not map the BODY_START and BODY_END grouping tags.

Once you have mapped the fields, the Update Mapping and Disable Mapping buttons
become visible from the View Template page.

5-8 Oracle XML Publisher User’s Guide

Setting Runtime Properties for a Template
You can set runtime configuration properties that are specific to a template. To update or
assign properties to this template, select the Edit Configuration button. Property values
set at the Template level take precedence over values set at the Data Definition level
or at the Site Level. For a full description of the properties, see Setting Configuration
Properties, page 8-2.

Translatable Templates
When you define a template as translatable, XML Publisher extracts the translatable
strings. You can then export the strings into an XLIFF (.xlf) file. This XLIFF file can then
be sent to a translation provider, or using a text editor, you can enter the translation
for each string.

Note: XLIFF is the XML Localization Interchange File Format. It
is the standard format used by localization providers. For more
information about the XLIFF specification, see http://www.oasis-open.
org/committees/xliff/documents/xliff-specification.htm

When translated, use the Upload Translations button to store the translated file in the
Template Manager. The translated file will appear in the Available Translations region
for the template.

A "translatable string" is any text in the template that is intended for display in the
published report, such as table headers and field labels. Text supplied at runtime from
the data is not translatable, nor is any text that you supply in the Microsoft Word form
fields.

Note: Use the translatable template option when you do not
require additional changes to the layout. If you wish to modify the
layout for specific translated versions of your template, upload the
modified, translated template as a localized template. See Adding
Localized Templates for Additional Languages, page 5-8.

To dene a template as translatable:
1. Select the Translatable check box from the Create Template page.

To update an existing template to be translatable:
1. Enter a Translatable File on the Update Template Definition page.

Exporting a File for Translation
The following steps summarize exporting and updating a template for
translation. Editing the XLIFF file is described in further detail in the following sections.

1. Select the Export Translation button.

2. Save the .xlf file to a local directory. If your company uses a translation provider, send
this file to your provider.

3. To enter your own translation, open the file with a text editor (such as WordPad).

4. The <file> element contains the attribute target-language. Replace the value
of target-language with the value for the desired target language.

Using the Template Manager 5-9

http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm
http://www.oasis-open.org/committees/xliff/documents/xliff-specification.htm

5. Replace the "target" element values with the desired translation for the "source"
element values.

Caution: Do not update the embedded data fields, page 5-11.

6. Upload the edited file to the Template Manager using the Upload Translations
button.

Your translated file will now appear under the Available Translations region.

Structure of the XLIFF File
The XLIFF file generated by XML Publisher has the following structure:

<xliff>
<file>
<header>
<body>
<trans-unit>
<source>
<target>
<note>

The following figure shows an excerpt from an untranslated XLIFF file:

<source> and <target> Elements
Each <source> element contains a translatable string from the template in the source
language of the template. For example,

<source>Total</source>
When you initially export the XLIFF file for translation, the source and target elements
are all identical. To create the translation for this template, enter the appropriate
translation for each source element string in its corresponding <target> element.

Therefore if you were translating the sample template into German, you would enter
the following for the Total string:

5-10 Oracle XML Publisher User’s Guide

<source>Total</source>
<target>Gesamtbetrag</target>
Embedded Data Fields
Some templates contain placeholders for data fields embedded in the text display strings
of the report. For example, the title of the sample report is

Italian Purchase VAT Register - (year)

where (year) is a placeholder in the RTF template that will be populated at runtime by
data from an XML element. These fields are not translatable, because the value comes
from the data at runtime.

To identify embedded data fields, the following token is used in the XLIFF file:

[&n]

where n represents the numbered occurrence of a data field in the template.

For example, in the preceding XLIFF sample, the first translatable string is

<source>Italian Purchase VAT Register - [&1]<source>

Warning: Do not edit or delete the embedded data field tokens or you
will affect the merging of the XML data with the template.

source-language and target-language attributes
The <file> element includes the attributes source-language and
target-language. The valid value for source-language and target-language is a
combination of the language code and country code as follows:

• the two-letter ISO 639 language code

• the two-letter ISO 3166 country code

For example, the value for English-United States is "en-US". This combination is also
referred to as a locale.

When you edit the exported XLIFF file you must change the target-language
attribute to the appropriate locale value of your target language. The following table
shows examples of source-language and target-language attribute values appropriate
for the given translations:

Translation (Language/
Territory)

source-language value target-language value

From English/US
To English/Canadian

en-US en-CA

From English/US
To Chinese/China

en-US zh-CN

From Japanese/Japan
To French/France

ja-JP fr-FR

The following figure shows the sample XLIFF file from the previous figure updated with
the Chinese translation:

Using the Template Manager 5-11

Uploading a Translation
To upload a translation:

1. Select the Upload Translations button.

2. From the Upload Translations page, click Browse to locate the translated file in
your local file system, then click Apply.

Progress and Status Indicators

When you upload a translation, if all the target elements contain data, the Status will be
Enabled and the Progress will be Complete.

If XML Publisher detects that all the target elements are not populated, the Progress
indicator displays Incomplete, and the Status defaults to Disabled.

To enable a translation, select it and click the Enable button. Only enabled translations
are available to the Concurrent Manager. Both complete and incomplete translations
can be enabled.

Updating a Translation
To update a translation file, select its Export Translation icon to download the XLIFF
file for editing.

5-12 Oracle XML Publisher User’s Guide

6
Generating Your Customized Report

This chapter pertains to Oracle E-Business Suite installations only.

This chapter covers the following topics:

• Using the Concurrent Manager to Generate Your Custom Output

Using the Concurrent Manager to Generate Your Custom Output
Important: Application Object Library (FND) patch 3435480 fully
integrates XML Publisher with the Concurrent Manager. If you have
taken this patch (also available in 11.5.10 Oracle E-Business Suite
Cumulative Update 1), you can use the Integrated One-Step Publishing
Process, page 6-1. If you have not taken this update, you must use the
Two-Step Publishing Process, page 6-2.

To generate your custom output, ensure that the concurrent program is set to generate
XML. A concurrent program can be set to generate XML from the Concurrent Programs
window by setting the Output Format to XML:

Navigate to the Concurrent Programs window from the System Administrator or
Application Developer responsibility:

• From the System Administrator responsibility, choose Concurrent, then
Program, then Define.

• From the Application Developer responsibility, choose Concurrent, then Program.

Integrated One-Step Publishing Process
Note: Use this process if you have taken patch 3435480, Publishing
Concurrent Requests with XML Publisher.

Use standard request submission to submit the report concurrent program.

• If you are using the Submit Request form, the Layout field of the Upon Completion
region displays the currently selected template. To change the template, template
language, or output format select the Options button.

• If you are using the HTML-based Schedule Request interface, select the template and
output format from the Layout page of the process train.

Generating Your Customized Report 6-1

Assigning a Default Template
You can assign a default template to the concurrent program that will be used by the
concurrent manager and XML Publisher to publish the report unless the user selects
a different template at runtime.

To assign a default template to a concurrent program:

1. Navigate to the Update Concurrent Program window (available from the System
Administration Responsibility).

2. Select the Onsite Setting tab.

3. Select the template to use as the default from the Template list of values.

Note: The Template field is not available from the Forms-based
Concurrent Programs window.

Two-Step Publishing Process
Note: Use this process if you have not taken patch 3435480.

1. Using Standard Request Submission, submit the report, noting the request ID. The
request creates the XML data file that XML Publisher will merge with the template.

2. After the request completes, use Standard Request Submission to submit the XML
Publisher Concurrent Request.

The Parameters window will prompt you to enter the following fields:

• Report Request - Select the Request ID of the request you wish to publish.

• Template - Select the template you wish to use to format the report data. Only
templates registered in the Template Manager with the request data source
will appear on the list.

• Template Locale - Select the Language and Territory combination of the template
you wish to use.

Note: If you do not select a valid language and territory
combination, XML Publisher will use the template that
corresponds to your session language and territory. If a valid
template for this combination does not exist, XML Publisher will
use the Default Template. See Default Template, page 5-5.

• Output Format - select the output format. If your selected template is RTF, you
can generate output in Excel (HTML), HTML, PDF, or RTF. If your selected
template is PDF, the output format must also be PDF.

When you submit the request, XML Publisher merges the XML data from your chosen
request with the selected template to generate your selected output format.

6-2 Oracle XML Publisher User’s Guide

7
XML Publisher Extended Functions

This chapter covers the following topics:

• Extended SQL Functions

• XSL Equivalents

• Using FO Elements

Extended SQL Functions
XML Publisher has extended a set of SQL functions for use in RTF templates. The syntax
for these extended functions is

<?xdofx:expression?>

The supported functions are shown in the following table:

SQL Statement Usage Description

2+3 <?xdofx:2+3?> Addition

2-3 <?xdofx:2-3?> Subtraction

2*3 <?xdofx:2*3?> Multiplication

2/3 <?xdofx:2/3?> Division

2**3 <?xdofx:2**3?> Exponential

3||2 <?xdofx:3||2?> Concatenation

lpad(’aaa’,10,’.’) <?xdofx:lpad(’aaa’,10,’.’)?> The lpad function pads the left side of a
string with a specific set of characters. The
syntax for the lpad function is:
lpad(string1,padded_length,[pad_
string])

string1 is the string to pad characters to (the
left-hand side).
padded_length is the number of characters
to return.
pad_string is the string that will be padded
to the left-hand side of string1 .

XML Publisher Extended Functions 7-1

SQL Statement Usage Description

rpad(’aaa’,10,’.’) <?xdofx:rpad(’aaa’,10,’.’)?> The rpad function pads the right side of a
string with a specific set of characters.
The syntax for the rpad function is:
rpad(string1,padded_length,[pad_
string]).
string1 is the string to pad characters to (the
right-hand side).
padded_length is the number of characters
to return.
pad_string is the string that will be padded
to the right-hand side of string1

decode(’xxx’,’bbb’,’ccc’,’xxx’,
’ddd’)

<?xdofx:decode(’xxx’,’bbb’,’ccc’,
’xxx’,’ddd’)?>

The decode function has the functionality of
an IF-THEN-ELSE statement. The syntax
for the decode function is:
decode(expression, search,
result [,search, result]...[,
default])

expression is the value to compare.
search is the value that is compared against
expression.
result is the value returned, if expression is
equal to search.
default is returned if no matches are found.

Instr(’abcabcabc’,’a’,2) <?xdofx:Instr(’abcabcabc’,’a’,2)?> The instr function returns the location of
a substring in a string. The syntax for the
instr function is:
instr(string1,string2,[start_
position],[nth_appearance])

string1 is the string to search.
string2 is the substring to search for in
string1.
start_position is the position in string1 where
the search will start. The first position
in the string is 1. If the start_position
is negative, the function counts back
start_position number of characters from
the end of string1 and then searches towards
the beginning of string1.
nth appearance is the nth appearance of
string2.

7-2 Oracle XML Publisher User’s Guide

SQL Statement Usage Description

substr(’abcdefg’,2,3) <?xdofx:substr(’abcdefg’,2,3)?> The substr function allows you to extract a
substring from a string. The syntax for the
substr function is:
substr(string, start_position,
[length])

string is the source string.
start_position is the position for extraction.
The first position in the string is always 1.
length is the number of characters to extract.

replace(name,’John’,’Jon’) <?xdofx:replace(name,’John’,
’Jon’)?>

The replace function replaces a sequence
of characters in a string with another set
of characters. The syntax for the replace
function is:
replace(string1,string_to_replace,
[replacement_string])
string1 is the string to replace a sequence of
characters with another set of characters.
string_to_replace is the string that will be
searched for in string1.
replacement_string is optional. All
occurrences of string_to_replace will be
replaced with replacement_string in string1.

to_number(’12345’) <?xdofx:to_number(’12345’)?>

to_char(12345) <?xdofx:to_char(12345)?>

sysdate() <?xdofx:sysdate()?>

The following table shows supported combination functions:

SQL Statement Usage

(2+3/4-6*7)/8 <?xdofx:(2+3/4-6*7)/8?>

lpad(substr(’1234567890’,5,3),10,’^’) <?xdofx:lpad(substr(’1234567890’,5,3),10,’^’)?>

decode(’a’,’b’,’c’,’d’,’e’,’1’)||instr(’321’,1,1) <?xdofx:decode(’a’,’b’,’c’,’d’,’e’,’1’)||instr(’321’,
1,1)?>

XSL Equivalents
The following table lists the XML Publisher simplified syntax with the XSL equivalents.

XML Publisher Extended Functions 7-3

Supported XSL Elements Description XML Publisher Syntax

<xsl:value-of select=
"name">

Placeholder syntax <?name?>

<xsl:apply-templates
select="name">

Applies a template rule to the
current element’s child nodes.

<?apply:name?>

<xsl:copy-of select=
"name">

Creates a copy of the current
node.

<?copy-of:name?>

<xsl:call-template
name="name">

Calls a named template to be
inserted into/applied to the
current template.

<?call:name?>

<xsl:sort select=
"name">

Sorts a group of data based on
an element in the dataset.

<?sort:name?>

<xsl:for-each select=
"name">

Loops through the rows of data
of a group, used to generate
tabular output.

<?for-each:name?>

<xsl:choose> Used in conjunction with when
and otherwise to express
multiple conditional tests.

<?choose?>

<xsl:when test="exp"> Used in conjunction with
choose and otherwise to
express multiple conditional
tests

<?when:expression?>

<xsl:otherwise> Used in conjunction with
choose and when to express
multiple conditional tests

<?otherwise?>

<xsl:if test="exp"> Used for conditional
formatting.

<?if:expression?>

<xsl:template name=
"name">

Template declaration <?template:name?>

<xsl:variable name=
"name">

Local or global variable
declaration

<?variable:name?>

<xsl:import href="url"> Import the contents of one
stylesheet into another

<?import:url?>

<xsl:include href=
"url">

Include one stylesheet in
another

<?include:url?>

<xsl:stylesheet xmlns:
x="url">

Define the root element of a
stylesheet

<?namespace:x=url?>

Using FO Elements
You can use most FO elements in an RTF template inside the Microsoft Word form
fields. The following FO elements have been extended for use with XML Publisher RTF
templates. The XML Publisher syntax can be used with either RTF template method.

The full list of FO elements supported by XML Publisher can be found in the
Appendix: Supported XSL-FO Elements, page B-1.

7-4 Oracle XML Publisher User’s Guide

FO Element XML Publisher Syntax

<fo:page-number-citation ref-id=
"id">

<?fo:page-number-citation:id?>

<fo:page-number> <?fo:page-number?>

<fo:ANY NAME WITHOUT ATTRIBUTE> <?fo:ANY NAME WITHOUT ATTRIBUTE?>

XML Publisher Extended Functions 7-5

Part 2
Implementation and Developer’s Guide

8
Administration

This chapter covers the following topics:

• XML Publisher Administration

• Configuration

• Uploading Font Files

• Creating Font Mappings

• Locales

• Font Fallback Logic

• Font File Location

• Predefined Fonts

• Defining Currency Formats

XML Publisher Administration
You can customize the behavior of XML Publisher by setting properties in the
Administration interface. The Administration interface allows you to:

• Set configuration properties, page 8-2

Important: It is strongly recommended that you set a temporary
directory for processing large files. If you do not, you will encounter
"Out of Memory" errors. Create a temporary directory by setting a
value for the Temporary directory property, page 8-3.

• Define font mappings, page 8-10

• Upload font files, page 8-10

• Define currency formats, page 8-16

Administration 8-1

Conguration

The Configuration page displays all the properties grouped by type. Setting any
property from this tab sets the property for the Site level. Properties can also be set at the
Template level and the Data Definition level. If conflicting values are set for a property
at each level, the Template level will take precedence, followed by the Data Definition
level, then the Site level.

For information on setting properties at the Template level, see Setting Runtime
Properties for a Template, page 5-9. For information on setting properties at the Data
Definition level, see Setting Runtime Properties for a Data Definition, page 5-3.

Compatibility with the Conguration File
In previous releases of XML Publisher these properties could only be set using
a configuration file (xdo.cfg). You can still use the configuration file to set these
properties, and if already installed, the values will be respected. If values are entered in
the Administration interface, however, these will take precedence.

The xdo configuration file must be used to set parameters specific to a server. For
example, to specify different temporary directories for each server, you must use the
xdo.cfg file instead of specifying it as a site-level parameter in the Administration
interface.

See XML Publisher Configuration File, page A-1 for details on setting up this file.

General Properties
The property available from the General heading is:

8-2 Oracle XML Publisher User’s Guide

Property Name Internal Name Default Value Description

Temporary
directory

system-temp-dir N/A Enter the directory path for the temporary
directory to be used by the FO Processor
when processing large files. It is strongly
recommended that you set a temporary
directory to avoid "Out of Memory" errors.
Note: To set different directories for
different servers, you must use the
configuration file to set this property
at the server level. See XML Publisher
Configuration File, page A-1 for details
on setting up this file.

PDF Output Properties
The following properties are available for PDF output:

Property Name Internal Name Default Value Description

Compress PDF output pdf-
compression

True Specify "True" or "False" to control compression
of the output PDF file.

Hide PDF viewer’s menu
bars

pdf-hide-
menubar

False Specify "True" to hide the viewer application’s
menu bar when the document is active.

Hide PDF viewer’s tool
bars

pdf-hide-
toolbar

False Specify "True" to hide the viewer application’s
toolbar when the document is active.

Replace smart quotes pdf-replace-
smartquotes

True Set to "False" if you do not want curly quotes
replaced with straight quotes in your PDF
output.

PDF Security
Use the following properties to control the security settings for your output PDF
documents:

Property Name Internal Name Default Value Description

Enable PDF Security pdf-security False If you specify "True," the output PDF file
will be encrypted. You must also specify
the following properties:

• Open document password

• Modify permissions password

• Encryption Level

Open document
password

pdf-open-
password

N/A This password will be required for opening
the document. It will enable users to
open the document only. This property is
enabled only when "Enable PDF Security"
is set to "True".

Modify permissions
password

pdf-
permissions-
password

N/A This password enables users to override the
security setting. This property is effective
only when "Enable PDF Security" is set to
"True".

Administration 8-3

Property Name Internal Name Default Value Description

Encryption level pdf-encryption-
level

0 - low Specify the encryption level for the output
PDF file. The possible values are:

• 0: Low (40-bit RC4, Acrobat 3.0 or later)

• 1: High (128-bit RC4, Acrobat 5.0 or
later)

This property is effective only when "Enable
PDF Security" is set to "True". When
Encryption level is set to 0, you can also set
the following properties:

• Disable printing

• Disable document modification

• Disable context copying, extraction,
and accessibility

• Disable adding or changing comments
and form fields

When Encryption level is set to 1, the
following properties are available:

• Enable text access for screen readers

• Enable copying of text, images, and
other content

• Allowed change level

• Allowed printing level

Disable printing pdf-no-printing False Permission available when "Encryption
level" is set to 0. When set to "True", printing
is disabled for the PDF file.

Disable document
modification

pdf-no-
changing-the-
document

False Permission available when "Encryption
level" is set to 0. When set to "True", the
PDF file cannot be edited.

Disable context
copying, extraction, and
accessibility

pdf-no-cceda False Permission available when "Encryption
level" is set to 0. When set to "True", the
context copying, extraction, and
accessibility features are disabled.

Disable adding or
changing comments
and form fields

pdf-no-accff False Permission available when "Encryption
level" is set to 0. When set to "True", the
ability to add or change comments and
form fields is disabled.

Enable text access for
screen readers

pdf-enable-
accessibility

True Permission available when "Encryption
level" is set to 1. When set to "True", text
access for screen reader devices is enabled.

Enable copying of text,
images, and other content

pdf-enable-
copying

False Permission available when "Encryption
level" is set to 1. When set to "True", copying
of text, images, and other content is enabled.

8-4 Oracle XML Publisher User’s Guide

Property Name Internal Name Default Value Description

Allowed change level pdf-changes-
allowed

0 Permission available when "Encryption
level" is set to 1. Valid Values are:

• 0: none

• 1: Allows inserting, deleting, and
rotating pages

• 2: Allows filling in form fields and
signing

• 3: Allows commenting, filling in form
fields, and signing

• 4: Allows all changes except extracting
pages

Allowed printing level pdf-printing-
allowed

0 Permission available when "Encryption
level" is set to 1. Valid values are:

• 0: None

• 1: Low resolution (150 dpi)

• 2: High resolution

RTF Output
The following properties can be set to govern RTF output files:

Property Name Internal Name Default Value Description

Enable change tracking rtf-track-
changes

False Set to "True" to enable change tracking in the
output RTF document.

Protect document for
tracked changes

rtf-protect-
document-for-
tracked-changes

False Set to "True" to protect the document for
tracked changes.

HTML Output
The following properties can be set to govern HTML output files:

Administration 8-5

Property Name Internal Name Default Value Description

Base image URI html-image-base-
uri

N/A Base URI which is inserted into the src
attribute of the image tag before the image
file name. This works only when the image
is embedded in the template.

Image file directory html-image-dir N/A Enter the directory for XML Publisher to
store the image files that are embedded in
the template.

Base CSS URI html-css-base-
uri

N/A Base URI which is inserted into the HTML
header to specify where the cascading
stylesheets (CSS) for your output HTML
documents will reside. You must set this
property when make-accessible is true.

CSS file directory html-css-dir N/A The CSS directory where XML Publisher
stores the css file. You must set this property
when make-accessible is true.

Show header html-show-header True Set to "False" to suppress the template header
in HTML output.

Show footer html-show-footer True Set to "False" to suppress the template footer
in HTML output.

Replace smart quotes html-replace-
smartquotes

True Set to "False" if you do not want curly quotes
replaced with straight quotes in your HTML
output.

Character set html-output-
charset

UTF-8 Specify the output HTML character set.

Make HTML output
accessible

make-accessible False Specify true if you want to make the HTML
output accessible.

FO Processing Properties
The following properties can be set to govern FO processing:

8-6 Oracle XML Publisher User’s Guide

Property Name Internal Name Default Value Description

Font mapping set N/A N/A Select the Font Mapping Set from the
list. This will be used for mapping fonts
from RTF and XSL-FO templates to output
PDF documents. See Creating a Font
Mapping, page 8-11 for more information.

Currency format Set N/A N/A Select the Currency Mapping Set from the
list. Use a currency mapping if you want
to use specific currency format masks in
your templates. A currency mapping can
be used for RTF and XSL-FO templates
only. See Defining Currency Formats, for
more information.

Bidi language digit
substitution type

digit-
substitution

None Valid values are "None" and "National".
When set to "None", Eastern European
numbers will be used. When set to
"National", Hindi format (Arabic-Indic
digits) will be used. This setting is effective
only when the locale is Arabic, otherwise
it is ignored.

Pages cached during
processing

system-cache-
page-size

50 This property is enabled only when you
have specified a Temporary Directory
(under General properties). During table
of contents generation, the FO Processor
caches the pages until the number of
pages exceeds the value specified for this
property. It then writes the pages to a file in
the Temporary Directory.

Disable variable header
support

fo-prevent-
variable-header

False If "True", prevents variable header
support. Variable header support
automatically extends the size of the header
to accommodate the contents.

Add prefix to IDs when
merging FO

fo-merge-
conflict-
resolution

False When merging multiple XSL-FO inputs, the
FO Processor automatically adds random
prefixes to resolve conflicting IDs. Setting
this property to "True" disables this feature.

Use XML Publisher’s
XSLT processor

xslt-xdoparser True Controls XML Publisher’s parser usage. If
set to False, XSLT will not be parsed.

Enable scalable feature
of XSLT processor

xslt-scalable False Controls the scalable feature of the XDO
parser. The property "Use XML Publisher’s
XSLT processor" must be set to "True" for
this property to be effective.

RTF Template Properties
The following properties can be set to govern RTF templates:

Administration 8-7

Property Name Internal Name Default Value Description

Extract attribute sets rtf-extract-
attribute-sets

Auto The RTF processor will automatically
extract attribute sets within the generated
XSL-FO. The extracted sets are placed
in an extra FO block, which can be
referenced. This improves processing
performance and reduces file size.
Valid values are:

• Enable - extract attribute sets for all
templates and subtemplates

• Auto - extract attribute sets for
templates, but not subtemplates

• Disable - do not extract attribute sets

Enable XPath rewriting rtf-rewrite-path True When converting an RTF template
to XSL-FO, the RTF processor will
automatically rewrite the XML tag names
to represent the full XPath notations. Set
this property to "False" to disable this
feature.

Characters used for
checkbox

rtf-checkbox-
glyph

Default value: Albany
WT J;9746;9747/A

The XML Publisher default PDF
output font does not include a glyph
to represent a checkbox. If your
template contains a checkbox, use this
property to define a Unicode font for
the representation of checkboxes in
your PDF output. You must define the
Unicode font number for the "checked"
state and the Unicode font number for
the "unchecked" state using the following
syntax: fontname;<unicode font
number for true value’s glyph
>;<unicode font number for
false value’s glyph>

Example: Albany WT J;9746;9747/A
Note that the font that you specify must
be made available to XML Publisher at
runtime.

PDF Template Properties
The following properties can be set to govern PDF templates:

Property Name Default Value Description

Font mapping set N/A Select the Font Mapping Set. This will be used for
mapping fonts from PDF templates to output PDF
documents. See Creating a Font Mapping, page
8-11 for more information.

XLIFF Extraction
The following properties can be set to govern XLIFF extraction:

8-8 Oracle XML Publisher User’s Guide

Property Name Internal Name Default Value Description

Translation expansion
percentage

xliff-trans-
expansion

150 (percentage) This property determines the maximum
percent expansion of an extracted
translation unit. For example, if
set to 200, the XLIFF extractor will
allow expansion by 200% - that is, a
10-character element will have a
maximum width of 30 characters.

Minimum translation
length

xliff-trans-min-
length

15 (characters) Sets a minimum length in characters
for the extracted translation unit. For
example, the default expansion of a
4-character field is 10 characters (based
on the default setting of Translation
expansion percentage of 150). If the
Minimum translation length is 15, this
field will be reset to 15 characters.

Maximum translation
length

xliff-trans-max-
length

4000 (characters) Sets a limit to the calculated expansion of
the translation unit (in characters). For
example, the default maximum
expansion of 100 characters is 250
characters. SettingMaximum translation
length to 200 would limit this expansion
to 200 characters.

Extract white space xliff-trans-null False Instructs the XLIFF extractor to create a
translation unit for a record that contains
only spaces (is null). Set to "True" to
generate the translation unit.

Extract sections without
letters

xliff-trans-
symbol

False Instructs the XLIFF extractor whether
to extract symbol characters. If set
to "False" only A-Z and a-z will be
extracted.

Extract words with
underscores

xliff-trans-
keyword

True If set to "False", words with underscores
will not be extracted.

Administration 8-9

Uploading Font Files

Use the Font Files page to view and upload font files for use with XML Publisher at
runtime.

To upload a font:
1. Select the Create Font File button.

2. On the Create Font File page, enter a Font Name.

3. Use the Browse button to select the font file for upload.

You can update the font file associated with a font name by selecting the Update icon
from the Font Files page.

Creating Font Mappings
Use the Font Mappings page to define mappings for fonts used in your templates to
desired published fonts. Font mapping is performed only for PDF output.

There are two types of mappings:

• FO to PDF - for mapping fonts from RTF templates and XSL-FO templates to PDF
output fonts

• PDF Form - for mapping fonts from PDF templates to different PDF output fonts

The mapping can then be defined at the site level, the template level, or the data
definition level, using the Configuration tab. See FO Processing Properties, page 8-6
for setting the FO to PDF mapping. See PDF Template Properties, page 8-8 for setting
the PDF to PDF mapping.

Within a Font Mapping Set you can define multiple font mappings. Therefore you can
use the same Font Mapping Set for multiple templates using different fonts, or to support
multiple fonts in a single base document.

8-10 Oracle XML Publisher User’s Guide

To create a Font Mapping, first create a Font Mapping Set, then create Font Mappings
within the set. The Font Mapping fields will vary depending on the type of mapping you
choose (FO to PDF or PDF Form).

Creating a Font Mapping Set
1. Select the Create Font Mapping Set button from the Font Mappings page.

2. On the Create Font Mapping Set page, enter aMapping Name andMapping
Code. Enter any unique name and code you choose.

3. Select the mapping Type:

• FO to PDF - for RTF and XSL-FO templates

• PDF Form - for PDF templates

4. Select Apply. If there are no errors, you will receive confirmation that your mapping
set was successfully created and the Font Mappings page will launch.

Creating a Font Mapping:
1. Select Create Font Mapping.

2. On the Create Font Mapping page, enter the following as appropriate and select
Continue:

If your font mapping type is FO to PDF
Base Font
• Font Family - enter the font family that will be mapped to a different font. For

example: Arial.

• Select the Style: Normal or Italic

• Select theWeight: Normal or Bold

Locale
• (Optional) Select the Language and Territory codes. Only templates with the

corresponding language and territory codes will use this font mapping. A locale
is a combination of an ISO language and an ISO country. See Locales, page 8-12
for more information.

Target Font Type
• Select the Font Type that the base font is to be mapped to: Truetype or Type 1.

For a list of Truetype and Type 1 fonts, see Predefined Fonts, page 8-13.

If your font mapping type is PDF Form
Base Font
• Font Family - enter the font family that will be mapped to a different font. For

example: serif. See Type 1 Fonts, page 8-14 for the list.

Target Font Type
• The target Font Type for PDF Form is always Truetype.

3. Enter the following as appropriate:

• If you selected Truetype, or if the font mapping type is PDF Form:

1. Select the Truetype Font from the list of fonts that have been uploaded.

Administration 8-11

2. If you want to map to a specific numbered font in the collection, enter the
Truetype Collection Number.

• If you selected Type 1, select the Font name from the list. See Type 1, page 8-14
Fonts for the list.

Locales
A locale is a combination of an ISO language and an ISO country. ISO languages are
defined in ISO 639 and ISO countries are defined in ISO 3166.

The structure of the locale statement is

ISO Language-ISO country

Locales are not case-sensitive and the ISO country can be omitted.

Example locales:

• en

• en-US

• EN-US

• ja

• ko

• zh-CN

Font Fallback Logic
XML Publisher uses a font mapping fallback logic so that the result font mappings
used for a template are the a composite of the font mappings from the template up to
the site level. If a mapping is found for a font on more than one level, the most specific
level’s value overrides the others.

The resulting font mapping to use in any particular instance is the sum of all the
applicable font mappings. The applicable mappings in order of preference, are:

Language + Territory match, territory null > Language + Territory
null (global value)
For example:

Suppose for a particular template, there are different font mapping sets assigned at the
site and template levels, with the mappings shown in the following table:

Level Font Family Style Weight Language Territory Target Font

Site Times New
Roman

normal normal (none) (none) Times

Site Arial normal normal Japanese Japan Times

Template Arial normal normal Japanese (none) Courier

Template Trebuchet
MS

normal normal (none) (none) Helvetica

8-12 Oracle XML Publisher User’s Guide

At runtime if the locale of the template file is Japanese/Japan, the following font
mappings will be used:

Font Family Style Weight Target Font

Times New Roman normal normal Times

Arial normal normal Times

Trebuchet MS normal normal Helvetica

Note that even though there is a mapping for Arial at the template level, the site level
value is used because it has a better match for the locale.

Font File Location
When using Truetype font files, the font file will be downloaded from the database to the
middle-tier server before it is used by XML Publisher. The files will be placed in the XML
Publisher temporary directory, in the subdirectory {TEMP_DIR}/xdofonts/{environment
two task}/

The font file will only be downloaded the first time the font is used (therefore first-time
processing may be slower).

Note that if there is not a temporary directory defined, the font mechanism may produce
unexpected results. See Temporary directory property, page 8-3 for information on
setting the temporary directory.

Predened Fonts
XML Publisher has several predefined fonts. These fonts do not require any font setting
in the Administration interface.

The Type1 fonts are listed in the following table:

Administration 8-13

Type 1 Fonts

Number Font Family Style Weight Font Name

1 serif normal normal Time-Roman

1 serif normal bold Times-Bold

1 serif italic normal Times-Italic

1 serif italic bold Times-BoldItalic

2 sans-serif normal normal Helvetica

2 sans-serif normal bold Helvetica-Bold

2 sans-serif italic normal Helvetica-Oblique

2 sans-serif italic bold Helvetica-
BoldOblique

3 monospace normal normal Courier

3 monospace normal bold Courier-Bold

3 monospace italic normal Courier-Oblique

3 monospace italic bold Courier-BoldOblique

4 Courier normal normal Courier

4 Courier normal bold Courier-Bold

4 Courier italic normal Courier-Oblique

4 Courier italic bold Courier-BoldOblique

5 Helvetica normal normal Helvetica

5 Helvetica normal bold Helvetica-Bold

5 Helvetica italic normal Helvetica-Oblique

5 Helvetica italic bold Helvetica-
BoldOblique

6 Times normal normal Times

6 Times normal bold Times-Bold

6 Times italic normal Times-Italic

6 Times italic bold Times-BoldItalic

7 Symbol normal normal Symbol

8 ZapfDingbats normal normal ZapfDingbats

The TrueType fonts are listed in the following table. All TrueType fonts will be subsetted
and embedded into PDF.

8-14 Oracle XML Publisher User’s Guide

Number Font Family
Name

Style Weight Actual Font Actual Font Type

1 Albany WT normal normal ALBANYWT.ttf TrueType (Latin1
only)

2 Albany WT J normal normal ALBANWTJ.ttf TrueType
(Japanese flavor)

3 Albany WT K normal normal ALBANWTK.ttf TrueType (Korean
flavor)

4 Albany WT SC normal normal ALBANWTS.ttf TrueType
(Simplified
Chinese flavor)

5 Albany WT TC normal normal ALBANWTT.ttf TrueType
(Traditional
Chinese flavor)

6 Andale Duospace
WT

normal normal ADUO.ttf TrueType (Latin1
only, Fixed width)

6 Andale Duospace
WT

bold bold ADUOB.ttf TrueType (Latin1
only, Fixed width)

7 Andale Duospace
WT J

normal normal ADUOJ.ttf TrueType
(Japanese flavor,
Fixed width)

7 Andale Duospace
WT J

bold bold ADUOJB.ttf TrueType
(Japanese flavor,
Fixed width)

8 Andale Duospace
WT K

normal normal ADUOK.ttf TrueType (Korean
flavor, Fixed
width)

8 Andale Duospace
WT K

bold bold ADUOKB.ttf TrueType (Korean
flavor, Fixed
width)

9 Andale Duospace
WT SC

normal normal ADUOSC.ttf TrueType
(Simplified
Chinese flavor,
Fixed width)

9 Andale Duospace
WT SC

bold bold ADUOSCB.ttf TrueType
(Simplified
Chinese flavor,
Fixed width)

10 Andale Duospace
WT TC

normal normal ADUOTC.ttf TrueType
(Traditional
Chinese flavor,
Fixed width)

10 Andale Duospace
WT TC

bold bold ADUOTCB.ttf TrueType
(Traditional
Chinese flavor,
Fixed width)

Administration 8-15

Dening Currency Formats

The Currencies page allows you to map a number format mask to a specific currency
so that your reports can display multiple currencies with their own corresponding
formatting. Currency formatting is only supported for RTF and XSL-FO templates.

To utilize currency formatting, you must:

1. Define a Currency Format Set.

2. Add the specific currency format masks to the set.

3. Assign the Currency Format Set as a configuration property at the desired level
(site, data definition, or template). It is available from the FO Processing Properties,
page 8-6 list.

4. Enter the format-currency command in your RTF template to apply the format
to the field at runtime. See Currency Formatting, page 2-96.

To dene a Currency Format Set:
1. Navigate to the Currencies page under the Administration tab. Select Create

Currency Format Set.

2. Enter a Name and a Code for the set. The Code is a unique identifier and cannot
be changed later. Select Apply.

3. The Currency Formats page will display for your newly created set.

To add currency formats to the Currency Format Set:
1. Select Add Currency Format to add a format to your set.

2. Select a Currency Name from the list.

Note: This list is generated from the FND currency table and should
include all ISO currencies. Additional currencies can be added from
the System Administrator responsibility.

8-16 Oracle XML Publisher User’s Guide

3. Enter the Format Mask you wish to use for this currency and select Apply.

The Format Mask must be in the Oracle number format. The Oracle number
format uses the components "9", "0", "D", and "G" to compose the format, for
example: 9G999D00 where

9 represents a displayed number only if present in data

G represents the group separator

D represents the decimal separator

0 represents an explicitly displayed number regardless of incoming data

See Using the Oracle Format Mask, page 2-89 for more information about these
format mask components.

After a currency format has been created, you can update or delete it from the Currency
Formats page.

Administration 8-17

9
Data Templates

This chapter covers the following topics:

• Introduction

• The Data Template Definition

• Constructing the Data Template

• How to Call a Data Template

• Sample Data Templates

Introduction
The XML Publisher data engine enables you to rapidly generate any kind of XML data
structure against the Oracle database in a scalable, efficient manner. The data template is
the method by which you communicate your request for data to the data engine. It is an
XML document whose elements collectively define how the data engine will process the
template to generate the XML.

The data engine supports the following functionality:

• Schema generation

• Default RTF template generation

• Flexfields

• Single and multiple data queries

• Query links

• Parameters

• Multiple data groups

• Aggregate functions (SUM, AVG, MIN, MAX, COUNT)

• Event triggers

The XML output generated by the data engine supports the following:

• Unicode for XML Output

Unicode is a global character set that allows multilingual text to be displayed in a
single application. This enables you to develop a single multilingual application
and deploy it worldwide.

• Canonical format

Data Templates 9-1

The data engine generates date elements using the canonical ISO date
format: YYYY-MM-DDTHH24:MI:SS.FF3TZH:TZM for a mapped date element, and
######.## for number elements in the data template XML output.

The data template can be called using the Concurrent Manager or a Java API.

Process of Overview of Implementing a Data Template for Use with the Concurrent Manager
The process overview for implementing a data template to be called by the Concurrent
Manager is as follows (this chapter covers each step in more detail):

Using an XML or text editor:
• Write the data template XML document following the guidelines in this chapter.

Using the Template Manager:
• Create a Data Definition for the data template in the Template Manager. You will

upload your data template to the Template Manager.

• Register any layout templates that you wish to apply to the data generated from
your data template.

Using Oracle Applications System Administrator responsibility:
• Register the data template as a Concurrent Program in Oracle Applications noting

the following:

• Designate "XDODTEXE" as the executable for your concurrent program. This is
the XML Publisher Java concurrent program that will execute your data template.

• The Short Name that you assign to the program must match the Data Definition
Code that you assigned to the data template in the Template Manager. The
XML Publisher executable uses the short name of the program to locate the
corresponding data template in the Template Manager.

• Assign the concurrent program to an appropriate Request Group for your users to
run.

When your user submits the request, the Concurrent Manager executes the XML
Publisher Data Template Java concurrent program. The short name of the concurrent
program is used to locate the appropriate data template in the Template Manager. When
the data generation is complete, the Concurrent Manager’s Output Post Processor
applies the layout template to the generated XML.

The Data Template Denition
The data template is an XML document that consists of four basic sections: define
parameters, define triggers, define data query, define data structure. This structure is
shown in the following graphic:

9-2 Oracle XML Publisher User’s Guide

As shown in the sample figure, the data template consists of a <parameters> section
in which parameters are declared in child <parameter> elements; a <dataQuery>
section in which the SQL queries are defined in child <sqlStatement> elements; and a
<dataStructure> section in which the output XML structure is defined.

The table below lists the elements that make up the XML data template. Each element is
described in detail in the following sections. Required elements are noted.

Element Attributes/Description

dataTemplate (Required) Attributes:

• name (Required)

• description

• version (Required)

• defaultPackage - the PL/SQL package name to resolve any lexical
references, group filters, or data triggers defined in the template.

parameters Consists of one or more <parameter> elements.

parameter Attributes:

• name (Required) - the parameter name that will be referenced in the
template.

• dataType - valid values are: "character", "date", "number"

• defaultValue - value to use for the parameter if none supplied from the data

lexicals Consists of one or more lexical elements to support flexfields.

Data Templates 9-3

Element Attributes/Description

lexical There are four types of key flexfield-related lexicals as follows:

• oracle.apps.fnd.flex.kff.segments_metadata

• oracle.apps.fnd.flex.kff.select

• oracle.apps.fnd.flex.kff.where

• oracle.apps.fnd.flex.kff.order_by

dataQuery (Required) Consists of one or more <sqlstatement> elements.

sqlstatement (Required) Attribute:
name (Required) - the unique query identifier. Note that this name identifier
will be the same across the data template. Enter the query inside the CDATA
section.

link Attributes:

• parentQuery - specify the parent query name.

• parentColumn - specify the parent column name.

• childQuery - specify the child query name.

• childColumn - specify the child column name.

• condition - the SQL operator that defines the relationship between the
parent column and the child column. The following values for condition
are supported: =, <, <=, >, >=

dataTrigger Attributes:

• name (Required) - the event name to fire this trigger

• source (Required) - the PL/SQL <package name>.<function name>

dataStructure (Required for multiple queries) Defines the structure of the output
XML. Consists of <group> and <element> elements to specify the
structure. This section is optional for single queries; if not specified, the data
engine will generate flat XML.

9-4 Oracle XML Publisher User’s Guide

Element Attributes/Description

group Consists of one or more <element> elements and sub <group> elements.
Attributes:

• name (Required) - the XML tag name to be assigned to the group.

• source (Required) - the unique query identifier for the corresponding
sqlstatement from which the group’s elements will be derived.

• groupFilter - the filter to apply to the output data group set. Define the
filter as: <package name>.<function name>.
Note: Applying a filter has performance impact. Do not use this
functionality unless necessary. When possible, filter data using a
WHERE clause in your query.

element (Required) Attributes:

• name - the tag name to assign to the element in the XML data output.

• value (Required) - the column name for the SQL statement. Note that for
aggregations in which the column name is in another group, the value
must be defined as <group name>.<column/alias name>.

• function - supported functions are: SUM(), COUNT(), AVG(),MIN(),MAX()

Constructing the Data Template
You can use any text or XML editor to write a data template.

Data Template Declaration
The <dataTemplate> element is the root element. It has a set of related attributes
expressed within the <dataTemplate> tag.

Attribute Name Description

name (Required) Enter the data template name.

description (Optional) Enter a description of this data
template.

version (Required) Enter a version number for this data
template.

defaultPackage This attribute is required if your data template
contains lexical references or any other calls to
PL/SQL.

Parameters Section
A parameter is a variable whose value can be set at runtime. Parameters are especially
useful for modifying SELECT statements and setting PL/SQL variables at runtime. The
Parameters section of the data template is optional.

How to Dene Parameters
The <parameter> element is placed between the open and close <parameters>
tags. The <parameter> element has a set of related attributes. These are expressed

Data Templates 9-5

within the <parameter> tag. For example, the name, dataType, and defaultValue
attributes are expressed as follows:

<parameters>
<parameter name="department" dataType="number" defaultValue="10

"/>
</parameters>

Attribute Name Description

name Required. A keyword, unique within a given Data
Template, that identifies the parameter.

dataType Optional. Specify the parameter data type as
"character", "date", or "number". Default value is
"character".
For the "date" dataType, the following three formats
(based on the canonical ISO date format) are supported:

• YYYY-MM-DD (example: 1997-10-24)

• YYYY-MM-DD HH24:MI:SS (example: 1997-10-24
12:00:00)

• YYYY-MM-DDTHH24:MI:SS.FF3TZH:TZM

defaultValue Optional. This value will be used for the parameter if no
other value is supplied from the data at runtime.

How to Pass Parameters
To pass parameters, (for example, to restrict the query), use bind variables in your
query. For example:

Query:

SELECT * FROM EMP
WHERE deptno=:department
At runtime, the value of department is passed to the query:

SELECT * FROM EMP
WHERE deptno=10

Data Query Section
The <dataQuery> section of the data template is required.

How to Dene Queries
The <sqlStatement> element is placed between the open and close dataQuery
tags. The <sqlStatement> element has a related attribute, name. It is expressed
within the <sqlStatment> tag. The query is entered in the CDATA section. For example:

<dataQuery>
<sqlStatement name="Q1">
<![CDATA[SELECT DEPTNO,DNAME,LOC from dept]]>
</sqlStatement>

</dataQuery>

9-6 Oracle XML Publisher User’s Guide

Attribute Name Description

name A unique identifying name for the query. Note
that this name will be referred to throughout
the data template.

If your column names are not unique, you must use aliases in your SELECT statements
to ensure the uniqueness of your column names. If you do not use an alias, then the
default column name is used. This becomes important when you specify the XML output
in the dataStructure section. To specify an output XML element from your query you
declare a value attribute for the element tag that corresponds to the source column.

Tip: Performing operations in SQL is faster than performing them in
the data template or PL/SQL. It is recommended that you use SQL for
the following operations:

• Use a WHERE clause instead of a group filter to exclude records.

• Perform calculations directly in your query rather than in the
template.

Lexical References
You can use lexical references to replace the clauses appearing after
SELECT, FROM, WHERE, GROUP BY, ORDER BY, or HAVING. Use a lexical reference
when you want the parameter to replace multiple values at runtime.

Create a lexical reference using the following syntax:

¶metername
Define the lexical parameters as follows:

• Before creating your query, define a parameter in the PL/SQL default package for
each lexical reference in the query. The data engine uses these values to replace
the lexical parameters.

• Create your query containing lexical references.

For example:

Package employee
AS
where_clause varchar2(1000);
.....

Package body employee
AS
.....
where_clause := ’where deptno=10’;
.....

Data template definition:

<dataQuery>
<sqlstatement name="Q1">
<![CDATA[SELECT ENAME, SAL FROM EMP &where_clause]]>
</sqlstatement>
</dataQuery>

Data Templates 9-7

How to Dene a Data Link Between Queries
If you have multiple queries, you must link them to create the appropriate data
output. In the data template, there are two methods for linking queries: using the
<link> element to define the link between queries, or using bind variables.

You can specify any number of links. The <link> element has a set of attributes. Use
these attributes to specify the required link information. For example:

<link name="DEPTEMP_LINK" parentQuery="Q1" parentColumn="DEPTNO"
childQuery="Q_2" childColumn="DEPARTMENTNO"/>

Attribute Name Description

name Required. Enter a unique name for the link.

parentQuery Specify the parent query name. This must be the name that you
assigned to the corresponding <sqlstatement> element. See
How to Define Queries, page 9-6.

parentColumn Specify the parent column name.

childQuery Specify the child query name. This must be the name that you
assigned to the corresponding <sqlstatement> element. See
How to Define Queries, page 9-6.

childColumn Specify the child column name.

You can also link queries together by using bind variables in your query. For example:

<dataQuery>
<sqlstatement name="Q1">
<![CDATA[SELECT EMPNO, ENAME, JOB from EMP
WHERE DEPTNO = :DEPTNO]]>

</sqlstatement>
</dataQuery>

Tip: To maximize performance when building data queries in the data
template:

XML Publisher tests have shown that using bind variables is more
efficient than using the link tag..

Using Data Triggers
Data triggers execute PL/SQL functions at specific times during the execution and
generation of XML output. Using the conditional processing capabilities of PL/SQL
for these triggers, you can do things such as perform initialization tasks and access
the database.

Data triggers are optional, and you can have as many <dataTrigger> elements as
necessary.

The <dataTrigger> element has a set of related attributes. These are expressed within
the <dataTrigger> tag. For example, the name and source attributes are expressed
as follows:

<dataTrigger name="beforeReport" source="employee.beforeReport()"
/>
<dataTrigger name="beforeReport" source="employee.beforeReport(:Pa
rameter)"/>

9-8 Oracle XML Publisher User’s Guide

Attribute Name Description

name The event name to fire this trigger.

source The PL/SQL <package name>.<function name>
where the executable code resides.

The location of the trigger indicate at what point the trigger fires:

• Place a beforeReport trigger anywhere in your data template before the
<dataStructure> section.. A beforeRepot trigger fires before the dataQuery is
executed.

• Place an afterReport trigger after the <dataStructure> section. An afterReport
trigger fires after you exit and after XML output has been generated.

Data Structure Section
In the data structure section you define what the XML output will be and how it will
be structured. The complete group hierarchy is available for output. You can specify
all the columns within each group and break the order of those columns; you can use
summaries, and placeholders to further customize within the groups. The dataStructure
section is required for multiple queries and optional for single queries. If omitted for a
single query, the data engine will generate flat XML.

Dening a Group Hierarchy
In the data template, the <group> element is placed between open and close
<dataStructure> tags. Each <group> has a set of related elements. You can define a
group hierarchy and name the element tags for the XML output.

Creating Break Groups
Use a break group to produce subtotals or add placeholder columns. A break group
suppresses duplicate values in sequential records. You should set an Order By clause in
the SQL query to suppress duplicate values.

Assign a name to the group, and declare the source query, then specify the elements you
want included in that group. When you specify the element, you assign it a name that
will be used as the XML output tag name, and you declare the source column as the
value. If you do not assign a name, the value (or source column name) will be used as
the tag name.

For example:

<dataStructure>
<group name="G_DEPT" source="Q1" ">

<element name="DEPT_NUMBER" value="DEPTNO" />
<element name="DEPT_NAME" value="DNAME"/>
<group name="G_EMP" source="Q2">

<element name="EMPLOYEE_NUMBER" value="EMPNO" />
<element name="NAME" value="ENAME"/>
<element name="JOB" value="JOB" />

</group>
</group>

</dataStructure>
The following table lists the attributes for the <group> element tag:

Data Templates 9-9

Attribute Name Description

name Specify any unique name for the group. This
name will be used as the output XML tag name
for the group.

source The name of the query that provides the
source data for the group. The source
must come from the name attribute of the
<sqlStatement> element.

The following table lists the attributes for the <element> element tag:

Attribute Name Description

name Specify any name for the element. This name
will be used as the output XML tag name for
the element. The name is optional. If you do
not specify a name, the source column name
will be used as the XML tag name.

value The name of the column that provides the
source data for the element (from your query).

Applying Group Filters
It is strongly recommended that you use a WHERE clause instead of a group filter to
exclude records from your extract. Filters enable you to conditionally remove records
selected by your queries, however, this approach impacts performance. Groups can
have user-created filters, using PL/SQL.

The PL/SQL function must return a boolean value (TRUE or FALSE). Depending on
whether the function returns TRUE or FALSE, the current record is included or excluded
from the XML data output.

For example, a sample PL/SQL function might be:

function G_EMPFilter return boolean is
begin
if sal < 1000 then
return (FALSE);

else
return (TRUE);

end if;
end;
An example of the group filter in your data template definition would be:

<group name="G_DEPT" source="Q1" groupFilter="empdata.G_EMPFilter
(:DEPTSAL)">

<element name="DEPT_NUMBER" value="DEPTNO" />
<element name="DEPT_NAME" value="DNAME"/>
<element name="DEPTSAL" value="G_EMP.SALARY" function="SUM(

)"/>

9-10 Oracle XML Publisher User’s Guide

Creating a Summary Column
A summary column performs a computation on another column’s data. Using
the function attribute of the <element> tag, you can create the following
summaries: sum, average, count, minimum, and maximum.

To create a summary column, you must define the following three attributes in the
element tag:

Attribute Description

name The XML tag name to be used in the XML data
output.

source The name of the column that contains the
data on which the summary calculation is to
be performed. The source column remains
unchanged.

function The aggregation function to be performed. The
type tells the XDO data engine how to compute
the summary column values. Valid values
are: SUM(), AVG(), COUNT(), MAX(), and
MIN().

The break group determines when to reset the value of the summary column. For
example:

<group name="G_DEPT" source="Q1">
<element name="DEPT_NUMBER" value="DEPTNO" />
<element name="DEPTSAL" value="G_EMP.SALARY" function="SUM()"/>

<group name="G_EMP" source="Q2">
<element name="EMPLOYEE_NUMBER" value="EMPNO" />
<element name="NAME" value="ENAME"/>
<element name="JOB" value="JOB" />
<element name="SALARY" value="SAL"/>

</group>
</group>

Flexeld Support
Flexfields are defined in the data template using lexical parameters.

How to dene a exeld
1. Define the SELECT statement to use for the report data.

2. Within the SELECT statement, define each flexfield as a lexical. Use the
&LEXICAL_TAG to embed flexfield related lexicals into the SELECT statement.

3. Define the flexfield-related lexicals using XML tags in the data template.

Data Templates 9-11

Example
<dataTemplate ...

<parameters ...
</parameters>

<lexicals ...
<lexical type="oracle.apps.fnd.flex.kff..."

name="<Name of the lexical>"
comment="<comment>"
/>

<lexical type="oracle.apps.fnd.flex.kff..."
name="<Name of the lexical>"
comment="<comment>"
/>

</lexicals>

<dataQuery>
<sqlStatement ...

SELECT &FLEX_SELECT flex_select_alias
FROM some_table st, code_combination_table cct
WHERE st.some_column = ’some_condition’

AND &FLEX_WHERE
ORDER BY st.some_column, &FLEX_ORDER_BY

</sqlStatement>
</dataQuery>
<dataStructure .../>

</dataTemplate>

Flexeld Lexicals
There are four types of KFF-related lexicals. These are:

• oracle.apps.fnd.flex.kff.segments_metadata

• oracle.apps.fnd.flex.select

• oracle.apps.fnd.flex.kff.where

• oracle.apps.fnd.flex.kff.order_by

Following are descriptions of each type of KFF lexical:

oracle.apps.fnd.ex.kff.segments_metadata
Use this type of lexical to retrieve flexfield-related metadata. Using this lexical, you are
not required to write PL/SQL code to retrieve this metadata. Instead, define a dummy
SELECT statement, then use this lexical to get the metadata.

The XML syntax for this lexical is as follows:

9-12 Oracle XML Publisher User’s Guide

<lexicals>
<lexical
type="oracle.apps.fnd.flex.kff.segments_metadata"
name="Name of the lexical"
comment="Comment"
application_short_name="Application Short Name of the KFF"
id_flex_code="Internal code of the KFF"
id_flex_num="Internal number of the KFF structure"
segments="For which segment(s) is this metadata requested?"
show_parent_segments="Should the parent segments be listed?"
metadata_type="Type of metadata requested"/>

</lexicals>
The following table lists the attributes for the segements_metadata lexical:

Attribute Description

application_short_name (Required) The application short name of the key
flexfield. For example: SQLGL.

id_flex_code (Required) the internal code of the key flexfield. For
example: GL#

id_flex_num (Required) Internal number of the key flexfield
structure. For example: 101

segments (Optional) Identifies for which segments this data is
requested. Default value is "ALL". See the Oracle
Applications Developer’s Guide for syntax.

show_parent_segments (Optional) Valid values are "Y" and "N". Default value
is "Y". If a dependent segment is displayed, the parent
segment is automatically displayed, even if it is not
specified as displayed in the segments attribute.

metadata_type (Required) Identifies what type of metadata is
requested. Valid values are:
above_prompt - above prompt of segment(s).
left_prompt - left prompt of segment(s)

Example
This example shows how to request the above_prompt of the GL Balancing
Segment, and the left_prompt of the GL Account Segment.

Data Templates 9-13

SELECT &FLEX_GL_BALANCING_APROMPT alias_gl_balancing_aprompt, &FL
EX_GL_ACCOUNT_LPROMPT alias_gl_account_lprompt
FROM dual

<lexicals>
<lexical type="oracle.apps.fnd.flex.kff.segments_metadata"
name="FLEX_GL_BALANCING_APROMPT"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NM"
segments="GL_BALANCING"
metadata_type="ABOVE_PROMPT"/>
<lexical type="oracle.apps.fnd.flex.kff.segments_metadata"
name="FLEX_GL_ACCOUNT+LPROMPT"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
segments="GL_ACCOUNT"
metadata_type="LEFT_PROMPT"/>

</lexicals>
oracle.apps.fnd.ex.kff.select
This type of lexical is used in the SELECT section of the statement. It is used to retrieve
and process key flexfield (kff) code combination related data based on the lexical
definition.

The syntax is as follows:

<lexicals>
<lexical

type="oracle.apps.fnd.flex.kff.select"
name="Name of the lexical"
comment="Comment"
application_short_name="Application Short Name of the KFF"
id_flex_code="Internal code of the KFF"
id_flex_num="Internal number of the KFF structure"
multiple_id_flex_num="Are multiple structures allowed?"
code_combination_table_alias="Code Combination Table Alias"
segments="Segments for which this data is requested"
show_parent_segments="Should the parent segments be listed?"
output_type="output type"/>

</lexicals>
The following table lists the attributes for this lexical:

9-14 Oracle XML Publisher User’s Guide

Attribute Description

application_short_name (Required) The application short name of the key
flexfield. For example: SQLGL.

id_flex_code (Required) the internal code of the key flexfield. For
example: GL#

id_flex_num (Conditionally required) Internal number of the key
flexfield structure. For example: 101. Required if
MULTIPLE_ID_FLEX_NUM is "N".

multiple_id_flex_num (Optional) Indicates whether this lexical supports
multiple structures or not. Valid values are "Y"
and "N". Default is "N". If set to "Y", then flex will
assume all structures are potentially used for data
reporting and it will use <code_combination_
table_alias>.<set_defining_column_name>
to retrieve the structure number.

code_combination_table_alias (Optional) Segment column names will be prepended
with this alias.

segments (Optional) Identifies for which segments this data is
requested. Default value is "ALL". See the Oracle
Applications Developer’s Guide for syntax.

show_parent_segments (Optional) Valid values are "Y" and "N". Default value
is "Y". If a dependent segment is displayed, the parent
segment is automatically displayed, even if it is not
specified as displayed in the segments attribute.

output_type (Required) Indicates what kind of output should be
used as the reported value. Valid values are:
value - segment value as it is displayed to user.
padded_value - padded segment value as it is
displayed to user. Number type values are padded
from the left. String type values are padded on the
right.

description Segment value’s description up to the description size
defined in the segment definition.

full_description Segment value’s description (full size).

security Returns Y if the current combination is secured
against the current user, N otherwise.

Example
This example shows how to report concatenated values, concatenated descriptions, the
value of the GL Balancing Segment, and the full description of the GL Balancing Segment
for a single structure:

SELECT &FLEX_VALUE_ALL alias_value_all,
&FLEX_DESCR_ALL alias_descr_all,
&FLEX_GL_BALANCING alias_gl_balancing,
&FLEX_GL_BALANCING_FULL_DESCR alias_gl_balancing_full_descr,
...
FROM gl_code_combinations gcc,

some_other_gl_table sogt

Data Templates 9-15

WHERE gcc.chart_of_accounts_id = :p_id_flex_num
and sogt.code_combination_id = gcc.code_combination_id
and <more conditions on sogt>

<lexicals>
<lexical

type="oracle.apps.fnd.flex.kff.select"
name="FLEX_VALUE_ALL"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
multiple_id_flex_num="N"
code_combination_table_alias="gcc"
segments="ALL"
show_parent_segments="Y"
output_type="VALUE"/>

<lexical
type="oracle.apps.fnd.flex.kff.select"
name="FLEX_DESCR_ALL"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
multiple_id_flex_num="N"
code_combination_table_alias="gcc"
segments="ALL"
show_parent_segments="Y"
output_type="DESCRIPTION"/>

<lexical
type="oracle.apps.fnd.flex.kff.select"
name="FLEX_GL_BALANCING"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
multiple_id_flex_num="N"
code_combination_table_alias="gcc"
segments="GL_BALANCING"
show_parent_segments="N"
output_type="VALUE"/>

<lexical
type="oracle.apps.fnd.flex.kff.select"
name="FLEX_GL_BALANCING_FULL_DESCR"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
multiple_id_flex_num="N"
code_combination_table_alias="gcc"
segments="GL_BALANCING"
show_parent_segments="N"
output_type="FULL_DESCRIPTION"/>

</lexicals>

9-16 Oracle XML Publisher User’s Guide

oracle.apps.fnd.ex.kff.where
This type of lexical is used in the WHERE section of the statement. It is used to modify
the WHERE clause such that the SELECT statement can filter based on key flexfield
segment data.

The syntax for this lexical is as follows:

<lexicals>
<lexical

type="oracle.apps.fnd.flex.kff.where"
name="Name of the lexical"
comment="Comment"
application_short_name="Application Short Name of the KFF"
id_flex_code="Internal code of the KFF"
id_flex_num="Internal number of the KFF structure"
code_combination_table_alias="Code Combination Table Alias"
segments="Segments for which this data is requested"
operator="The boolean operator to be used in the condition"
operand1="Values to be used on the right side of the operato

r"
operand2="High value for the BETWEEN operator"/>

</lexicals>
The attributes for this lexical are listed in the following table:

Attribute Description

application_short_name (Required) The application short name of the key
flexfield. For example: SQLGL.

id_flex_code (Required) the internal code of the key flexfield. For
example: GL#

id_flex_num (Conditionally required) Internal number of the key
flexfield structure. For example: 101. Required if
MULTIPLE_ID_FLEX_NUM is "N".

code_combination_table_alias (Optional) Segment column names will be prepended
with this alias.

segments (Optional) Identifies for which segments this data is
requested. Default value is "ALL". See the Oracle
Applications Developer’s Guide for syntax.

operator (Required) Valid values are:
=, <, >, <=, >=, !=, <>, ||, BETWEEN, LIKE

operand1 (Required) Values to be used on the right side of the
conditional operator.

operand2 (Optional) High value for the BETWEEN operator.

full_description Segment value’s description (full size).

security Returns Y if the current combination is secured
against the current user, N otherwise.

Example
This example shows a filter based on the GL Account segment and the GL Balancing
Segment:

Data Templates 9-17

SELECT <some columns>
FROM gl_code_combinations gcc,

some_other_gl_table sogt
WHERE gcc.chart_of_accounts_id = :p_id_flex_num
and sogt.code_combination_id = gcc.code_combination_id
and &FLEX_WHERE_GL_ACCOUNT
and &FLEX_WHERE_GL_BALANCING
and <more conditions on sogt>

<lexicals>
<lexical

type="oracle.apps.fnd.flex.kff.where"
name="FLEX_WHERE_GL_ACCOUNT"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
code_combination_table_alias="gcc"
segments="GL_ACCOUNT"
operator="="
operand1=":P_GL_ACCOUNT"/>

<lexical
type="oracle.apps.fnd.flex.kff.where"
name="FLEX_WHERE_GL_BALANCING"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
code_combination_table_alias="gcc"
segments="GL_BALANCING"
operator="BETWEEN"
operand1=":P_GL_BALANCING_LOW"
operand2=":P_GL_BALANCING_HIGH"/>

</lexicals>
oracle.apps.fnd.ex.kff.order_by
This type of lexical is used in the ORDER BY section of the statement. It returns a list of
column expressions so that the resulting output can be sorted by the flex segment values.

The syntax for this lexical is as follows:

<lexicals>
<lexical
type="oracle.apps.fnd.flex.kff.order_by"
name="Name of the lexical"
comment="Comment"
application_short_name="Application Short Name of the KFF"
id_flex_code="Internal code of the KFF"
id_flex_num="Internal number of the KFF structure"
multiple_id_flex_num="Are multiple structures allowed?"
code_combination_table_alias="Code Combination Table Alias"
segments="Segment(s)for which data is requested"
show_parent_segments="List parent segments?"/>

</lexicals>
The attributes for this lexical are listed in the following table:

9-18 Oracle XML Publisher User’s Guide

Attribute Description

application_short_name (Required) The application short name of the key
flexfield. For example: SQLGL.

id_flex_code (Required) the internal code of the key flexfield. For
example: GL#

id_flex_num (Conditionally required) Internal number of the key
flexfield structure. For example: 101. Required if
MULTIPLE_ID_FLEX_NUM is "N".

multiple_id_flex_num (Optional) Indicates whether this lexical supports
multiple structures or not. Valid values are "Y"
and "N". Default is "N". If set to "Y", then flex will
assume all structures are potentially used for data
reporting and it will use <code_combination_
table_alias>.<set_defining_column_name>
to retrieve the structure number.

code_combination_table_alias (Optional) Segment column names will be prepended
with this alias.

segments (Optional) Identifies for which segments this data is
requested. Default value is "ALL". See the Oracle
Applications Developer’s Guide for syntax.

show_parent_segments (Optional) Valid values are "Y" and "N". Default value
is "Y". If a dependent segment is displayed, the parent
segment is automatically displayed, even if it is not
specified as displayed in the segments attribute.

Example
The following example shows results sorted based on GL Account segment and GL
Balancing segment for a single structure KFF.

Data Templates 9-19

SELECT <some columns>
FROM gl_code_combinations gcc,

some_other_gl_table sogt
WHERE gcc.chart_of_accounts_id = :p_id_flex_num
and sogt.code_combination_id = gcc.code_combination_id
and <more conditions on sogt>

ORDER BY <some order by columns>,
&FLEX_ORDER_BY_GL_ACCOUNT,
&FLEX_ORDER_BY_GL_BALANCING

<lexicals>
<lexical

type="oracle.apps.fnd.flex.kff.order_by"
name="FLEX_ORDER_BY_GL_ACCOUNT"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
code_combination_table_alias="gcc"
segments="GL_ACCOUNT"
show_parent_segments="Y"/>

<lexical
type="oracle.apps.fnd.flex.kff.order_by"
name="FLEX_ORDER_BY_GL_BALANCING"
comment="Comment"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":P_ID_FLEX_NUM"
code_combination_table_alias="gcc"
segments="GL_BALANCING"
show_parent_segments="N"/>

</lexicals>

How to Call a Data Template
There are two methods for calling the data engine to process your data template:

• Concurrent Manager

• Data Engine Java APIs

Before you can use either of these methods, you must first register your data template
in the Template Manager as a Data Definition. For instructions on creating a Data
Definition in the Template Manager, see Creating the Data Definition, page 5-2. You will
upload your data template XML file to the Template Manager.

Using the Concurrent Manager
To use the concurrent manager to execute your data template, you must register a
Concurrent Program, using the define Concurrent Programs form (shown in the
following figure):

9-20 Oracle XML Publisher User’s Guide

Enter the following fields in the Concurrent Programs form:

Program
Enter a name for the data template program.

Short Name
The short name you assign to the concurrent program must match the Data Definition
code you assigned the Data Template in the Template Manager. This allows XML
Publisher to link the report definition with the corresponding Data Definition and layout
Template from the Template Manager at runtime. See Data Definition Code, page 5-2.

Application
Enter the application with which to associate this program.

Executable Name
Enter the XML Publisher data engine executable: XDODTEXE

Output Format
Select "XML" as the output format.

You can define parameters for the data template as you would any other concurrent
program. For more information about defining concurrent programs and parameters, see
Concurrent Programs window, Oracle Applications System Administrator's Guide.

After defining the concurrent program, assign it to a request group to make it accessible
to the appropriate users and responsibilities. For more information on request
groups, see the Oracle Applications System Administrator’s Guide.

Using the Data Engine Java API
The following classes comprise the data engine utility Java API:

• oracle.apps.xdo.oa.util.DataTemplate (OA wrapper API)

Data Templates 9-21

• oracle.apps.xdo.dataengine.DataProcessor (Core wrapper API)

The DataProcessor class is the main class to use to execute a data template with the XML
Publisher Data Engine. To use this API, you will need to instantiate this class and set
parameter values for the data template, connection and output destination. Once the
parameters are set, you can start processing by calling processData() method.

Note: See the OracleMetaLink note 337999.1, "About Oracle XML
Publisher Release 5.6" for links to the Java documentation.

Example
This example provides a sample data template file, then shows an annotated Java code
sample of how to call it.

The sample data template is called EmpDataTemplate.xml and is stored as
/home/EmpDataTemplate.xml:

<?xml version="1.0" encoding="WINDOWS-1252" ?>
<dataTemplate name="EmpData" description="Employee Details" Versi
on="1.0">
<parameters>
<parameter name="p_DeptNo" dataType="character" />
</parameters>
<dataQuery>
<sqlStatement name="Q1">
<![CDATA[
SELECT d.DEPTNO,d.DNAME,d.LOC,EMPNO,ENAME,JOB,MGR,HIREDATE,
SAL,nvl(COMM,0)
FROM dept d, emp e
WHERE d.deptno=e.deptno
AND d.deptno = nvl(:p_DeptNo,d.deptno)
]]>
</sqlStatement>
</dataQuery>
<dataStructure>
<group name="G_DEPT" source="Q1">
<element name="DEPT_NUMBER" value="DEPTNO" />
<element name="DEPT_NAME" value="DNAME" />
<element name="DEPTSAL" value="G_EMP.SALARY"
function="SUM()" />
<element name="LOCATION" value="LOC" />
<group name="G_EMP" source="Q1">
<element name="EMPLOYEE_NUMBER" value="EMPNO" />
<element name="NAME" value="ENAME" />
<element name="JOB" value="JOB" />
<element name="MANAGER" value="MGR" />
<element name="HIREDATE" value="HIREDATE" />
<element name="SALARY" value="SAL" />
</group>
</group>
</dataStructure>
</dataTemplate>
The following code sample is an annotated snippet of the Java code used to process the
data template by the data engine:

9-22 Oracle XML Publisher User’s Guide

{
try {

//Initialization – instantiate the DataProcessor class//
DataProcessor dataProcessor = new DataProcessor();

//Set Data Template to be executed
dataProcessor.setDataTemplate("/home/EmpDataTemplate.xml");

//Get Parameters – this method will return an array of the
//parameters in the data template
ArrayList parameters = dataProcessor.getParameters();

// Now we have the arraylist we need to iterate over
// the parameters and assign values to them
Iterator it = parameters.iterator();

while (it.hasNext())
{

Parameter p = (Parameter) it.next();
if (p.getName().equals("p_DeptNo"))

// Here we assign the value ‘10’ to the p_DeptNo parameter.
// This could have been entered from a report submission
// screen or passed in from another process.

p.setValue(new "10");
}

// The parameter values now need to be assigned
// to the data template; there are two methods
// available to do this: 1. Use the setParameters
// method to assign the ’parameters’ object to the template:

dataProcessor.setParameters(parameters);

// 2. or you can assign parameter values using a hashtable.

Hashtable parameters = new Hashtable();
parameters.put("p_DeptNo","10");
dataProcessor.setParameters(parameters);

// Now set the jdbc connection to the database that you
// wish to execute the template against.
// This sample assumes you have already created
// the connection object ‘jdbcConnection’

dataProcessor.setConnection(jdbcConnection);
// Specify the output directory and file for the data file

dataProcessor.setOutput("/home/EmpDetails.xml")
// Process the data template

dataProcessor.processData();
} catch (Exception e)
{
}
}

Other Useful Methods
The data engine has several very useful functions that can be used to generate objects or
files that can be used with the other XML Publisher APIs:

writeDefaultLayout – once the DataTemplate has been instantiated you can call this
method to generate a default RTF template that can be used with the RTFProcessor to

Data Templates 9-23

create an XSL template to be used with the FOProcessor. Alternatively, the default RTF
can be loaded into Microsoft Word for further formatting. This method can generate
either a String or Stream output.

writeXMLSchema - once the DataTemplate has been instantiated you can call this
method to generate an XML schema representation of your data template. This is very
useful if you are working with PDF templates and need to create mapping from the
PDF document to your XML data.

setScalableModeOn – if you know you are going to return a large dataset or have a
long running query you can specify that the data engine enter scalable mode. This will
cause it to use the disk rather than use memory to generate the output.

setMaxRows – this allows you to specify a fixed number of rows to be returned by
the engine. This is especially useful when you want to generate some sample data to
build a layout template against.

setSql – this method allows you to pass a SQLstring to the data engine and it will
return XML much like the native database methods available. Your SQL can also contain
parameters that can be given values prior to final processing. For example:

//Initialization – instantiate the DataProcessor class//
DataProcessor dataProcessor = new DataProcessor();

// Set the SQL to be executed
dataProcessor.setSQL(“select invoicenum, invoiceval from
invoice_table where
supplierid = :SupplID”);
Hashtable parameters = new Hashtable();
parameters.put("SupplID ","2000");
dataProcessor.setParameters(parameters);
dataProcessor.setConnection(jdbcConnection);
dataProcessor.setOutput("/home/InvoiceDetails.xml")
dataProcessor.processData();

This will then generate the XML output to the specified output file.

Sample Data Templates
This section contains two sample data templates:

• Employee Listing

• General Ledger Journals Listing

The sample files are annotated to provide a better description of the components of
the data template. To see more data template samples, see the XML Publisher page
on Oracle Technology Network (OTN) [http://www.oracle.com/technology/products/
applications/publishing/index.html]. From here you can copy and paste the samples to
get you started on your own data templates.

Employee Listing Data Template
This template extracts employee data and department details. It has a single
parameter, Department Number, that has to be populated at runtime. The data is
extracted using two joined queries that use the bind variable method to join the parent
(Q1) query with the child (Q2) query. It also uses the event trigger functionality using a
PL/SQLl package "employee" to set the where clause on the Q1 query and to provide a
group filter on the G_DEPT group.

9-24 Oracle XML Publisher User’s Guide

http://www.oracle.com/technology/products/applications/publishing/index.html

The sample data template will generate the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<dataTemplateName>
<LIST_G_DEPT>
<G_DEPT>
<DEPT_NUMBER>10</DEPT_NUMBER>
<DEPT_NAME>ACCOUNTING</DEPT_NAME>
<LOCATION>NEW YORK</LOCATION>
<LIST_G_EMP>
<G_EMP>
<EMPLOYEE_NUMBER>7782</EMPLOYEE_NUMBER>
<NAME>CLARK</NAME>
<JOB>MANAGER</JOB>
<MANAGER>7839</MANAGER>
<HIREDATE>1981-06-09T00:00:00.000-07:00</HIREDATE>
<SALARY>2450</SALARY>
</G_EMP>
<G_EMP>
<EMPLOYEE_NUMBER>7839</EMPLOYEE_NUMBER>
<NAME>KING</NAME>
<JOB>PRESIDENT</JOB>
<MANAGER/>
<HIREDATE>1981-11-17T00:00:00.000-08:00</HIREDATE>
<SALARY>5000</SALARY>
</G_EMP>
...
</LIST_G_EMP>
<DEPTSAL>12750</DEPTSAL>
</G_DEPT>
<G_DEPT>
<DEPT_NUMBER>20</DEPT_NUMBER>
<DEPT_NAME>RESEARCH</DEPT_NAME>
<LOCATION>DALLAS</LOCATION>
<LIST_G_EMP>
<G_EMP>
<EMPLOYEE_NUMBER>7369</EMPLOYEE_NUMBER>
<NAME>SMITH</NAME>
<JOB>CLERK</JOB>
...
</G_EMP>
</LIST_G_EMP>
<DEPTSAL>10875</DEPTSAL>
</G_DEPT>

</LIST_G_DEPT>
</dataTemplateName>

Following is the data template used to extract this data.

<?xml version="1.0" encoding="WINDOWS-1252" ?>
- The template is named, an optional description
- can be provided and the default package, if any, is identified:

<dataTemplate name="Employee Listing" description="" defaultPackag
e="employee"
version="1.0">

<parameters>

Data Templates 9-25

- Defines a single parameter for the Department Number
- with default of 20:

<parameter name="p_DEPTNO" dataType="character"
defaultValue="20"/>

</parameters>
<dataQuery>

<sqlStatement name="Q1">
- This extracts the department information based on a
- where clause from a pl/sql package:

<![CDATA[SELECT DEPTNO,DNAME,LOC from dept
where &pwhereclause
order by deptno]]>

</sqlStatement>
<sqlStatement name="Q2">

- This second query extracts the employee data and joins to
- the parent query using a bind variable, :DEPTNO

<![CDATA[SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,nvl
(COMM,0) COMM

from EMP
WHERE DEPTNO = :DEPTNO]]>

</sqlStatement>
</dataQuery>

- A call is made to a before fetch trigger to set the
- where clause variable in the department query, &pwhereclause:

<dataTrigger name="beforeReport"
source="employee.beforeReportTrigger"/>
<dataStructure>

- The following section specifies the XML hierarchy
- for the returning data:

<group name="G_DEPT" source="Q1"
groupFilter="employee.G_DEPTFilter(:DEPT_NUMBER)">

- There is a group filter placed on the DEPT group.
- This is returned from the employee.G_DEPTFilter plsql package.
- It passes the DEPT_NUMBER value ("name" attribute) rather
- than the DEPTNO value ("value" attribute)

<element name="DEPT_NUMBER" value="DEPTNO" />
<element name="DEPT_NAME" value="DNAME"/>

- This creates a summary total at the department level based
- on the salaries at the employee level for each department:

<element name="DEPTSAL" value="G_EMP.SALARY"
function="SUM()"/>

<element name="LOCATION" value="LOC" />
<group name="G_EMP" source="Q2">

<element name="EMPLOYEE_NUMBER" value="EMPNO" />
<element name="NAME" value="ENAME"/>
<element name="JOB" value="JOB" />
<element name="MANAGER" value="MGR"/>
<element name= "HIREDATE" value="HIREDATE"/>
<element name="SALARY" value="SAL"/>

</group>
</group>

</dataStructure>
</dataTemplate>
The PL/SQL Package:

9-26 Oracle XML Publisher User’s Guide

- This is the package specification, it declares the global
- variables and functions contained therein
procedure BeforeReportTrigger(p_test varchar2);
p_DEPTNO NUMBER;
pwhereclause varchar2(3200);
function G_DEPTFilter(deptno number) return boolean;
END;

/
- This is the package body, it contains the code for the
- functions/procedures

create or replace package body employee as

- this is the event trigger called from the data template
- prior to the data fetch. It sets the where clause
- for the department query (Q1) based on the incoming
- data template parameter
PROCEDURE BeforeReportTrigger IS
begin
IF (p_DEPTNO=10) THEN
pwhereclause :=’DEPTNO =10’;

elsif (p_DEPTNO=20) THEN
pwhereclause:=’DEPTNO =20’;

elsif (p_DEPTNO=30) THEN
pwhereclause:=’DEPTNO =30’;

elsif (p_DEPTNO=40) THEN
pwhereclause:=’DEPTNO =20’;

else
pwhereclause:=’1=1’;

end if;
end;
- This function specifies a group filter on the Q1 group.
- If the department number is 30 then the data is not returned.
FUNCTION G_DEPTFilter(deptno number) return boolean is
BEGIN
if deptno = 30 then
return FALSE;

end if;

RETURN TRUE;
end;
END;
/

General Ledger Journals Data Template Example
This data template extracts GL journals data from the E-Business Suite General Ledger
schema. It is based on an existing Oracle Report that has been converted to a data
template format. It follows the same format as the Employee data template but has
some added functionality.

<?xml version="1.0" encoding="UTF-8" ?>
<dataTemplate name="GLRGNJ" defaultPackage="GLRGNJ" version="1.0">
<parameters>
- Parameter declaration, these will be populated at runtime.
<parameter name="P_CONC_REQUEST_ID" dataType = "number"
defaultValue="0"></parameter>

Data Templates 9-27

<parameter name="P_JE_SOURCE_NAME" dataType="character">
</parameter>
<parameter name="P_SET_OF_BOOKS_ID" dataType="character"
defaultValue="1"></parameter>
<parameter name="P_PERIOD_NAME" dataType="character">Dec-97
</parameter>
<parameter name="P_BATCH_NAME" dataType="character"></parameter>
<parameter name="P_POSTING_STATUS" dataType="character"
defaultValue="P"></parameter>
<parameter name="P_CURRENCY_CODE" dataType="character"
defaultValue="USD"></parameter>
<parameter name="P_START_DATE" dataType = "date"></parameter>
<parameter name="P_END_DATE" dataType = "date"></parameter>
<parameter name="P_PAGESIZE" dataType = "number"
defaultValue="180"></parameter>
<parameter name="P_KIND" dataType = "character"
defaultValue="L"></parameter>

</parameters>
<lexicals>
- Flexfield lexical declaration, this specifies the setup required
- for these flexfield functions.
- The first will return the full accounting flexfield with
- the appropriate delimiter e.g. 01-110-6140-0000-000
<lexical type ="oracle.apps.fnd.flex.kff.select"

name ="FLEXDATA_DSP"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":STRUCT_NUM"
multiple_id_flex_num="N"
code_combination_table_alias="CC"
segments="ALL"
show_parent_segments="Y"
output_type="VALUE" />

- The second will return ‘Y’ if the current combination is
- secured against the current user, ‘N’ otherwise
<lexical type ="oracle.apps.fnd.flex.kff.select"

name ="FLEXDATA_SECURE"
application_short_name="SQLGL"
id_flex_code="GL#"
id_flex_num=":STRUCT_NUM"
multiple_id_flex_num="N"
code_combination_table_alias="CC"
segments="ALL"
show_parent_segments="Y"
output_type="SECURITY" />

</lexicals>
<dataQuery>
<sqlStatement name="Q_MAIN">
<![CDATA[
SELECT
S.user_je_source_name Source,
B.name Batch_Name,
B.default_effective_date Batch_Eff_date,
B.posted_date Batch_Posted_Date,
B.je_batch_id Batch_Id,
B.running_total_accounted_dr B_TOT_DR,
B.running_total_accounted_cr B_TOT_CR,
D.je_header_id Header_id,

9-28 Oracle XML Publisher User’s Guide

D.name Header_Name,
C.user_je_category_name Category,
D.running_total_accounted_dr H_TOT_DR,
D.running_total_accounted_cr H_TOT_CR,
J.je_line_num Je_Line_Num,
decode(nvl(CC.code_combination_id, -1), -1, ’A’,null)
FLEXDATA_H,
J.effective_date Line_Effective_Date,
J.description Line_Description,
J.accounted_dr Line_Acc_Dr,
J.accounted_cr Line_Acc_Cr,
D.currency_code Currency_Code,
D.external_reference Header_Reference,
&POSTING_STATUS_SELECT Recerence1_4,
nvl(J.stat_amount,0) Line_Stat_Amount,
GLL.description Batch_Type,
B.actual_flag Actual_Flag,
GLL2.meaning Journal_Type,
SOB.consolidation_sob_flag Cons_Sob_Flag,
&FLEXDATA_DSP FLEXDATA_DSP,
&FLEXDATA_SECURE FLEXDATA_SECURE
FROM gl_lookups GLL, gl_je_sources S, gl_je_categories C,
gl_je_lines J, gl_code_combinations CC, gl_je_headers D,
gl_je_batches B, gl_lookups GLL2, gl_sets_of_books SOB
WHERE GLL.lookup_code = B.actual_flag
AND GLL.lookup_type = ’BATCH_TYPE’
AND GLL2.lookup_type = ’AB_JOURNAL_TYPE’
AND GLL2.lookup_code = B.average_journal_flag
AND SOB.set_of_books_id = :P_SET_OF_BOOKS_ID
AND S.je_source_name = D.je_source
AND C.je_category_name = D.je_category
AND J.code_combination_id = CC.code_combination_id(+)
AND J.je_header_id = D.je_header_id
AND &CURRENCY_WHERE
AND D.je_source = NVL(:P_JE_SOURCE_NAME, D.je_source)
AND D.je_batch_id = B.je_batch_id
AND &POSTING_STATUS_WHERE
AND B.name = NVL(:P_BATCH_NAME, B.name)
AND &PERIOD_WHERE
AND B.set_of_books_id = :P_SET_OF_BOOKS_ID
ORDER BY S.user_je_source_name,
B.actual_flag,
B.name,
B.default_effective_date,
D.name,
J.je_line_num
]]>
</sqlStatement>
</dataQuery>
- The original report had an AfterParameter
- and Before report triggers
<dataTrigger name="afterParameterFormTrigger"
source="GLRGNJ.afterpform"/>
<dataTrigger name="beforeReportTrigger"
source="GLRGNJ.beforereport"/>
<dataStructure>
- A very complex XML hierarchy can be built with summary
- columns referring to lower level elements

Data Templates 9-29

<group name="G_SOURCE" dataType="varchar2" source="Q_MAIN">
<element name="Source" dataType="varchar2" value="Source"/>
<element name="SOU_SUM_ACC_DR" function="sum" dataType="number"
value="G_BATCHES.B_TOTAL_DR"/>
<element name="SOU_SUM_ACC_CR" function="sum" dataType="number"
value="G_BATCHES.B_TOTAL_CR"/>
<element name="SOU_SUM_STAT_AMT" function="sum"
dataType="number" value="G_BATCHES.B_TOT_STAT_AMT"/>
<group name="G_BATCHES" dataType="varchar2" source="Q_MAIN">
<element name="Actual_Flag" dataType="varchar2"
value="Actual_Flag"/>
<element name="Batch_Id" dataType="number" value="Batch_Id"/>
<element name="Batch_Name" dataType="varchar2"
value="Batch_Name"/>
<element name="Batch_Eff_date" dataType="date"
value="Batch_Eff_date"/>
<element name="Journal_Type" dataType="varchar2"
value="Journal_Type"/>
<element name="Cons_Sob_Flag" dataType="varchar2"
value="Cons_Sob_Flag"/>
<element name="Batch_Type" dataType="varchar2"
value="Batch_Type"/>
<element name="Batch_Posted_Date" dataType="date"
value="Batch_Posted_Date"/>
<element name="B_TOT_DR" dataType="number" value="B_TOT_DR"/>
<element name="B_TOTAL_DR" function="sum" dataType="number"
value="G_HEADERS.H_Total_Dr"/>
<element name="B_TOT_CR" dataType="number" value="B_TOT_CR"/>
<element name="B_TOTAL_CR" function="sum" dataType="number"
value="G_HEADERS.H_Total_Cr"/>
<element name="B_TOT_STAT_AMT" function="sum" dataType="number"

value="G_HEADERS.H_TOT_STAT_AMT"/>
<element name="B_TOTAL_STAT" function="sum" dataType="number"
value="G_HEADERS.H_Total_Stat"/>
<group name="G_HEADERS" dataType="varchar2" source="Q_MAIN">
<element name="Header_id" dataType="number"
value="Header_id"/>
<element name="Header_Name" dataType="varchar2"
value="Header_Name"/>
<element name="Category" dataType="varchar2"
value="Category"/>
<element name="Header_Reference" dataType="varchar2"
value="Header_Reference"/>
<element name="Currency_Code" dataType="varchar2"
value="Currency_Code"/>
<element name="H_TOT_DR" dataType="number" value="H_TOT_DR"/>
<element name="H_Total_Dr" function="sum" dataType="number"
value="G_LINES.Line_Acc_Dr"/>
<element name="H_TOT_CR" dataType="number" value="H_TOT_CR"/>
<element name="H_Total_Cr" function="sum" dataType="number"
value="G_LINES.Line_Acc_Cr"/>
<element name="H_TOT_STAT_AMT" function="sum"
dataType="number"
value="G_LINES.Line_Stat_Amount"/>
<element name="H_Total_Stat" function="sum" dataType="number"
value="G_LINES.Line_Stat_Amount"/>
<group name="G_LINES" dataType="varchar2" source="Q_MAIN"

9-30 Oracle XML Publisher User’s Guide

groupFilter="GLRGNJ.g_linesgroupfilter(:G_LINES.FLEXDATA_SECURE)">
<element name="Je_Line_Num" dataType="number"
value="Je_Line_Num"/>
<element name="FLEXDATA_H" dataType="varchar2"
value="FLEXDATA_H"/>
<element name="FLEXDATA_DSP" dataType="varchar2"
value="FLEXDATA_DSP"/>
<element name="Line_Description" dataType="varchar2"
value="Line_Description"/>
<element name="Recerence1_4" dataType="varchar2"
value="Recerence1_4"/>
<element name="Line_Acc_Dr" dataType="number"
value="Line_Acc_Dr"/>
<element name="Line_Acc_Cr" dataType="number"
value="Line_Acc_Cr"/>
<element name="Line_Stat_Amount" dataType="number"
value="Line_Stat_Amount"/>
<element name="Line_Effective_Date" dataType="date"
value="Line_Effective_Date"/>
<element name="FLEXDATA_SECURE" dataType="varchar2"
value="FLEXDATA_SECURE"/>

</group>
</group>
</group>
</group>
<element name="R_TOT_DR" function="sum" dataType="number"
value="G_SOURCE.SOU_SUM_ACC_DR"/>
<element name="R_TOT_CR" function="sum" dataType="number"
value="G_SOURCE.SOU_SUM_ACC_CR"/>
<element name="R_TOT_STAT_AMT" function="sum" dataType="number"
value="G_SOURCE.SOU_SUM_STAT_AMT"/>
<element name="JE_SOURCE_DSP" function="first" dataType="number"
value="G_SOURCE.Source"/>
<element name="REP_BATCH_ID" function="first" dataType="number"
value="G_BATCHES.Batch_Id"/>
<element name="C_DATEFORMAT" dataType="varchar2"
value="C_DATEFORMAT"/>
</dataStructure>
- There is an after fetch trigger, this can be used to clean up
- data or update records to report that they have been reported
<dataTrigger name="afterReportTrigger"
source="GLRGNJ.afterreport"/>
</dataTemplate>

Data Templates 9-31

10
Calling XML Publisher APIs

This chapter covers the following topics:

• Introduction

• PDF Form Processing Engine

• RTF Processor Engine

• FO Processor Engine

• PDF Document Merger

• Document Processor Engine

• XML Publisher Properties

• Applications Layer APIs

• Datasource APIs

• Template APIs

Introduction
This chapter is aimed at developers who wish to create programs or applications that
interact with XML Publisher through its application programming interface. This
information is meant to be used in conjunction with the Javadocs available from
OracleMetaLink document 337999.1, "About Oracle XML Publisher Release 5.6."

XML Publisher consists of two layers: a core layer of Java APIs and an Applications
layer of APIs and UI.

• The core layer contains the main processing engines that parse templates, merge
data, generate output, and deliver documents.

• The Applications layer allows the Applications developer to interact with the
Template Manager on a programmatic level, which in turn interacts with the core
layer.

This section assumes the reader is familiar with Java programming, XML, and XSL
technologies. For the Applications layer, it is assumed the reader is familiar with the
Template Manager.

XML Publisher Core APIs
XML Publisher is made up of the following core API components:

Calling XML Publisher APIs 10-1

• PDF Form Processing Engine

Merges a PDF template with XML data (and optional metadata) to produce PDF
document output.

• RTF Processor

Converts an RTF template to XSL in preparation for input to the FO Engine.

• FO Engine

Merges XSL and XML to produce any of the following output formats: Excel
(HTML), PDF, RTF, or HTML.

• PDF Document Merger

Provides optional postprocessing of PDF files to merge documents, add page
numbering, and set watermarks.

• eText Processor

Converts RTF eText templates to XSL and merges the XSL with XML to produce text
output for EDI and EFT transmissions.

• Document Processor (XML APIs)

Provides batch processing functionality to access a single API or multiple APIs by
passing a single XML file to specify template names, data sources, languages, output
type, output names, and destinations.

The following diagram illustrates the template type and output type options for each
core processing engine:

10-2 Oracle XML Publisher User’s Guide

PDF Form Processing Engine
The PDF Form Processing Engine creates a PDF document by merging a PDF template
with an XML data file. This can be done using file names, streams, or an XML data string.

As input to the PDF Processing Engine you can optionally include an XML-based
Template MetaInfo (.xtm) file. This is a supplemental template to define the placement of
overflow data.

The FO Processing Engine also includes utilities to provide information about your
PDF template. You can:

• Retrieve a list of field names from a PDF template

• Generate the XFDF data from the PDF template

• Convert XML data into XFDF using XSLT

Merging a PDF Template with XML Data
XML data can be merged with a PDF template to produce a PDF output document
in three ways:

• Using input/output file names

• Using input/output streams

• Using an input XML data string

You can optionally include a metadata XML file to describe the placement of overflow
data in your template.

Merging XML Data with a PDF Template Using Input/Output File Names
Input:

• Template file name (String)

• XML file name (String)

• Metadata XML file name (String)

Output:

• PDF file name (String)

Example
import oracle.apps.xdo.template.FormProcessor;
.
.

FormProcessor fProcessor = new FormProcessor();

fProcessor.setTemplate(args[0]); // Input File (PDF) name
fProcessor.setData(args[1]); // Input XML data file name
fProcessor.setOutput(args[2]); // Output File (PDF) name
fProcessor.setMetaInfo(args[3]); // Metadata XML File name

You can omit this setting when you do not use Metadata.

fProcessor.process();

Calling XML Publisher APIs 10-3

Merging XML Data with a PDF Template Using Input/Output Streams
Input:

• PDF Template (Input Stream)

• XML Data (Input Stream)

• Metadata XML Data (Input Stream)

Output:

• PDF (Output Stream)

Example
import java.io.*;
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();

FileInputStream fIs = new FileInputStream(originalFilePath); //
Input File
FileInputStream fIs2 = new FileInputStream(dataFilePath); // Inp

ut Data
FileInputStream fIs3 = new FileInputStream(metaData); // Metadat

a XML Data
FileOutputStream fOs = new FileOutputStream(newFilePath); // Out

put File

fProcessor.setTemplate(fIs);
fProcessor.setData(fIs2); // Input Data
fProcessor.setOutput(fOs);
fProcessor.setMetaInfo(fIs3);
fProcessor.process();

fIs.close();
fOs.close();

Merging an XML Data String with a PDF Template
Input:

• Template file name (String)

• XML data (String)

• Metadata XML file name (String)

Output:

• PDF file name (String)

10-4 Oracle XML Publisher User’s Guide

Example
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();

fProcessor.setTemplate(originalFilePath); // Input File (PDF)
name
fProcessor.setDataString(xmlContents); // Input XML string
fProcessor.setOutput(newFilePath); // Output File (PDF)
name
fProcessor.setMetaInfo(metaXml); // Metadata XML File name

You can omit this setting when you do not use Metadata.
fProcessor.process();

Retrieving a List of Field Names
Use the FormProcessor.getFieldNames() API to retrieve the field names from a PDF
template. The API returns the field names into an Enumeration object.

Input:

• PDF Template

Output:

• Enumeration Object

Example
import java.util.Enumeration;
import oracle.apps.xdo.template.FormProcessor;
.
.
.
FormProcessor fProcessor = new FormProcessor();
fProcessor.setTemplate(filePath); // Input File (PDF) name
Enumeration enum = fProcessor.getFieldNames();
while(enum.hasMoreElements()) {
String formName = (String)enum.nextElement();
System.out.println("name : " + formName + " , value : " + fProce

ssor.getFieldValue(formName));
}

Generating XFDF Data
XML Forms Data Format (XFDF) is a format for representing forms data and annotations
in a PDF document. XFDF is the XML version of Forms Data Format (FDF), a simplified
version of PDF for representing forms data and annotations. Form fields in a PDF
document include edit boxes, buttons, and radio buttons.

Use this class to generate XFDF data. When you create an instance of this class, an
internal XFDF tree is initialized. Use append() methods to append a FIELD element
to the XFDF tree by passing a String name-value pair. You can append data as many
times as you want.

Calling XML Publisher APIs 10-5

This class also allows you to append XML data by calling appendXML() methods. Note
that you must set the appropriate XSL stylesheet by calling setStyleSheet() method before
calling appendXML() methods. You can append XML data as many times as you want.

You can retrieve the internal XFDF document at any time by calling one of the following
methods: toString(), toReader(), toInputStream(), or toXMLDocument().

The following is a sample of XFDF data:

Example
<?xml version="1.0" encoding="UTF-8"?>
<xfdf xmlns="http://ns.adobe.com/xfdf/" xml:space="preserve">
<fields>
<field name="TITLE">
<value>Purchase Order</value>
</field>
<field name="SUPPLIER_TITLE">
<value>Supplie</value>

</field>
...
</fields>
The following code example shows how the API can be used:

Example
import oracle.apps.xdo.template.FormProcessor;
import oracle.apps.xdo.template.pdf.xfdf.XFDFObject;
.
.
.
FormProcessor fProcessor = new FormProcessor();
fProcessor.setTemplate(filePath); // Input File (PDF) name
XFDFObject xfdfObject = new XFDFObject(fProcessor.getFieldInfo());
System.out.println(xfdfObject.toString());

Converting XML Data into XFDF Format Using XSLT
Use an XSL stylesheet to convert standard XML to the XFDF format. Following is an
example of the conversion of sample XML data to XFDF:

Assume your starting XML has a ROWSET/ROW format as follows:

<ROWSET>
<ROW num="0">
<SUPPLIER>Supplier</SUPPLIER>
<SUPPLIERNUMBER>Supplier Number</SUPPLIERNUMBER>
<CURRCODE>Currency</CURRCODE>

</ROW>
...
</ROWSET>
From this XML you want to generate the following XFDF format:

10-6 Oracle XML Publisher User’s Guide

<fields>
<field name="SUPPLIER1">
<value>Supplier</value>

</field>
<field name="SUPPLIERNUMBER1">
<value>Supplier Number</value>

</field>
<field name="CURRCODE1">
<value>Currency</value>

</field>
...
</fields>
The following XSLT will carry out the transformation:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/X
SL/Transform">
<xsl:template match="/">
<fields>
<xsl:apply-templates/>
</fields>
</xsl:template>

<!-- Count how many ROWs(rows) are in the source XML file. -->
<xsl:variable name="cnt" select="count(//row|//ROW)" />
<!-- Try to match ROW (or row) element.
<xsl:template match="ROW/*|row/*">

<field>
<!-- Set "name" attribute in "field" element. -->
<xsl:attribute name="name">

<!-- Set the name of the current element (column name)
as a value of the current name attribute. -->

<xsl:value-of select="name(.)" />
<!-- Add the number at the end of the name attribute v

alue if more than 1 rows found in the source XML file.-->
<xsl:if test="$cnt > 1">

<xsl:number count="ROW|row" level="single" format="
1"/>

</xsl:if>
</xsl:attribute>
<value>

<!--Set the text data set in the current column data a
s a text of the "value" element. -->

<xsl:value-of select="." />
</value>

</field>
</xsl:template>

</xsl:stylesheet>
You can then use the XFDFObject to convert XML to the XFDF format using an XSLT
as follows:

Calling XML Publisher APIs 10-7

Example
import java.io.*;
import oracle.apps.xdo.template.pdf.xfdf.XFDFObject;
.
.
.
XFDFObject xfdfObject = new XFDFObject();

xfdfObject .setStylesheet(new BufferedInputStream(new FileInputStr
eam(xslPath))); // XSL file name
xfdfObject .appendXML(new File(xmlPath1)); // XML data file nam
e
xfdfObject .appendXML(new File(xmlPath2)); // XML data file nam
e

System.out.print(xfdfObject .toString());

RTF Processor Engine

Generating XSL
The RTF processor engine takes an RTF template as input. The processor parses the
template and creates an XSL-FO template. This can then be passed along with a data
source (XML file) to the FO Engine to produce PDF, HTML, RTF, or Excel (HTML) output.

Use either input/output file names or input/output streams as shown in the following
examples:

Generating XSL with Input/Output File Names
Input:

• RTF file name (String)

Output:

• XSL file name (String)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
public static void main(String[] args)
{

RTFProcessor rtfProcessor = new RTFProcessor(args[0]); //input tem
plate
rtfProcessor.setOutput(args[1]); // output file
rtfProcessor.process();

System.exit(0);
}

Generating XSL with Input/Output Stream
Input:

10-8 Oracle XML Publisher User’s Guide

• RTF (InputStream)

Output:

• XSL (OutputStream)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
public static void main(String[] args)
{
FileInputStream fIs = new FileInputStream(args[0]); //inpu

t template
FileOutputStream fOs = new FileOutputStream(args[1]); // out

put

RTFProcessor rtfProcessor = new RTFProcessor(fIs);
rtfProcessor.setOutput(fOs);
rtfProcessor.process();
// Closes inputStreams outputStream
System.exit(0);

}

FO Processor Engine

Generating Output from an XML File and an XSL File
The FO Processor Engine is XML Publisher’s implementation of the W3C XSL-FO
standard. It does not represent a complete implementation of every XSL-FO
component. The FO Processor can generate output in PDF, RTF, HTML, or Excel (HTML)
from either of the following two inputs:

• Template (XSL) and Data (XML) combination

• FO object

Both input types can be passed as file names, streams, or in an array. Set the output
format by setting the setOutputFormat method to one of the following:

• FORMAT_EXCEL

• FORMAT_HTML

• FORMAT_PDF

• FORMAT_RTF

An XSL-FO utility is also provided that creates XSL-FO from the following inputs:

• XSL file and XML file

• Two XML files and two XSL files

• Two XSL-FO files (merge)

The FO object output from the XSL-FO utility can then be used as input to the FO
processor.

Calling XML Publisher APIs 10-9

Major Features of the FO Processor
Bidirectional Text
XML Publisher utilizes the Unicode BiDi algorithm for BiDi layout. Based on specific
values for the properties writing-mode, direction, and unicode bidi, the FO Processor
supports the BiDi layout.

The writing-mode property defines how word order is supported in lines and order of
lines in text. That is: right-to-left, top-to-bottom or left-to-right, top-to-bottom. The
direction property determines how a string of text will be written: that is, in a specific
direction, such as right-to-left or left-to-right. The unicode bidi controls and manages
override behavior.

Font Fallback Mechanism
The FO Processor supports a two-level font fallback mechanism. This mechanism
provides control over what default fonts to use when a specified font or glyph is not
found. XML Publisher provides appropriate default fallback fonts automatically without
requiring any configuration. XML Publisher also supports user-defined configuration
files that specify the default fonts to use. For glyph fallback, the default mechanism will
only replace the glyph and not the entire string.

For more information, see XML Publisher Configuration File, page 8-1.

Variable Header and Footer
For headers and footers that require more space than what is defined in the template, the
FO Processor extends the regions and reduces the body region by the difference between
the value of the page header and footer and the value of the body region margin.

Horizontal Table Break
This feature supports a "Z style" of horizontal table break. The horizontal table break is
not sensitive to column span, so that if the column-spanned cells exceed the page (or
area width), the FO Processor splits it and does not apply any intelligent formatting to
the split cell.

The following figure shows a table that is too wide to display on one page:

The following figure shows one option of how the horizontal table break will handle the
wide table. In this example, a horizontal table break is inserted after the third column.

10-10 Oracle XML Publisher User’s Guide

The following figure shows another option. The table breaks after the third column, but
includes the first column with each new page.

Generating Output Using File Names
The following example shows how to use the FO Processor to create an output file using
file names.

Input:

• XML file name (String)

• XSL file name (String)

Output:

• Output file name (String)

Calling XML Publisher APIs 10-11

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
public static void main(String[] args)
{

FOProcessor processor = new FOProcessor();
processor.setData(args[0]); // set XML input file
processor.setTemplate(args[1]); // set XSL input file
processor.setOutput(args[2]); //set output file
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

System.exit(0);
}

Generating Output Using Streams
The processor can also be used with input/output streams as shown in the following
example:

Input:

• XML data (InputStream)

• XSL data (InputStream)

Output:

• Output stream (OutputStream)

10-12 Oracle XML Publisher User’s Guide

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
public void runFOProcessor(InputStream xmlInputStream,

InputStream xslInputStream,
OutputStream pdfOutputStream)

{

FOProcessor processor = new FOProcessor();
processor.setData(xmlInputStream);
processor.setTemplate(xslInputStream);
processor.setOutput(pdfOutputStream);
// Set output format (for PDF generation)
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

System.exit(0);

}

Generating Output from an Array of XSL Templates and XML Data
An array of data and template combinations can be processed to generate a single
output file from the multiple inputs. The number of input data sources must match
the number of templates that are to be applied to the data. For example, an input of
File1.xml, File2.xml, File3.xml and File1.xsl, File2.xsl, and File3.xsl will produce a single
File1_File2_File3.pdf.

Input:

• XML data (Array)

• XSL data (template) (Array)

Output:

• File Name (String)

Calling XML Publisher APIs 10-13

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.

public static void main(String[] args)
{

String[] xmlInput = {"first.xml", "second.xml", "third.xml"};
String[] xslInput = {"first.xsl", "second.xsl", "third.xsl"};

FOProcessor processor = new FOProcessor();
processor.setData(xmlInput);
processor.setTemplate(xslInput);

processor.setOutput("/tmp/output.pdf); //set (PDF) ou
tput file

processor.setOutputFormat(FOProcessor.FORMAT_PDF); processor.p
rocess();

// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

}

Using the XSL-FO Utility
Use the XSL-FO Utility to create an XSL-FO output file from input XML and XSL files, or
to merge two XSL-FO files. Output from this utility can be used to generate your final
output. See Generating Output from an XSL-FO file, page 10-17.

Creating XSL-FO from an XML File and an XSL File
Input:

• XML file

• XSL file

Output:

• XSL-FO (InputStream)

10-14 Oracle XML Publisher User’s Guide

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
public static void main(String[] args)
{
InputStream foStream;

// creates XSL-FO InputStream from XML(arg[0])
// and XSL(arg[1]) filepath String
foStream = FOUtility.createFO(args[0], args[1]);
if (mergedFOStream == null)
{
System.out.println("Merge failed.");
System.exit(1);

}

System.exit(0);
}

Creating XSL-FO from Two XML Files and Two XSL les
Input:

• XML File 1

• XML File 2

• XSL File 1

• XSL File 2

Output:

• XSL-FO (InputStream)

Calling XML Publisher APIs 10-15

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
public static void main(String[] args)
{
InputStream firstFOStream, secondFOStream, mergedFOStream;
InputStream[] input = InputStream[2];

// creates XSL-FO from arguments
firstFOStream = FOUtility.createFO(args[0], args[1]);

// creates another XSL-FO from arguments
secondFOStream = FOUtility.createFO(args[2], args[3]);

// set each InputStream into the InputStream Array
Array.set(input, 0, firstFOStream);
Array.set(input, 1, secondFOStream);

// merges two XSL-FOs
mergedFOStream = FOUtility.mergeFOs(input);

if (mergedFOStream == null)
{
System.out.println("Merge failed.");
System.exit(1);

}
System.exit(0);

}

Merging Two XSL-FO Files
Input:

• Two XSL-FO file names (Array)

Output:

• One XSL-FO (InputStream)

10-16 Oracle XML Publisher User’s Guide

Example
import oracle.apps.xdo.template.fo.util.FOUtility;
.
.
.
public static void main(String[] args)
{
InputStream mergedFOStream;

// creates Array
String[] input = {args[0], args[1]};

// merges two FO files
mergedFOStream = FOUtility.mergeFOs(input);
if (mergedFOStream == null)
{
System.out.println("Merge failed.");
System.exit(1);

}
System.exit(0);

}

Generating Output from an FO le
The FO Processor can also be used to process an FO object to generate your final
output. An FO object is the result of the application of an XSL-FO stylesheet to XML
data. These objects can be generated from a third party application and fed as input to
the FO Processor.

The processor is called using a similar method to those already described, but a template
is not required as the formatting instructions are contained in the FO.

Generating Output Using File Names
Input:

• FO file name (String)

Output:

• PDF file name (String)

Calling XML Publisher APIs 10-17

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
public static void main(String[] args) {

FOProcessor processor = new FOProcessor();
processor.setData(args[0]); // set XSL-FO input file
processor.setTemplate((String)null);
processor.setOutput(args[2]); //set (PDF) output file
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

System.exit(0);
}

Generating Output Using Streams
Input:

• FO data (InputStream)

Output:

• Output (OutputStream)

10-18 Oracle XML Publisher User’s Guide

Example
import java.io.InputStream;
import java.io.OutputStream;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
public void runFOProcessor(InputStream xmlfoInputStream,

OutputStream pdfOutputStream)
{

FOProcessor processor = new FOProcessor();
processor.setData(xmlfoInputStream);
processor.setTemplate((String)null);

processor.setOutput(pdfOutputStream);
// Set output format (for PDF generation)
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}
}

Generating Output with an Array of FO Data
Pass multiple FO inputs as an array to generate a single output file. A template is not
required, therefore set the members of the template array to null, as shown in the
example.

Input:

• FO data (Array)

Output:

• Output File Name (String)

Calling XML Publisher APIs 10-19

Example
import java.lang.reflect.Array;
import oracle.apps.xdo.template.FOProcessor;
.
.
.
public static void main(String[] args)
{

String[] xmlInput = {"first.fo", "second.fo", "third.fo"};
String[] xslInput = {null, null, null}; // null needs for xs

l-fo input

FOProcessor processor = new FOProcessor();
processor.setData(xmlInput);
processor.setTemplate(xslInput);

processor.setOutput("/tmp/output.pdf); //set (PDF) ou
tput file

processor.setOutputFormat(FOProcessor.FORMAT_PDF); processor.p
rocess();

// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

}

PDF Document Merger
The PDF Document Merger class provides a set of utilities to manipulate PDF
documents. Using these utilities, you can merge documents, add page numbering, set
backgrounds, and add watermarks.

Merging PDF Documents
Many business documents are composed of several individual documents that need to
be merged into a single final document. The PDFDocMerger class supports the merging
of multiple documents to create a single PDF document. This can then be manipulated
further to add page numbering, watermarks, or other background images.

Merging with Input/Output File Names
The following code demonstrates how to merge (concatenate) two PDF documents using
physical files to generate a single output document.

Input:

• PDF_1 file name (String)

10-20 Oracle XML Publisher User’s Guide

• PDF_2 file name (String)

Output:

• PDF file name (String)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
public static void main(String[] args)
{
try
{
// Last argument is PDF file name for output
int inputNumbers = args.length - 1;

// Initialize inputStreams
FileInputStream[] inputStreams = new FileInputStream[inputNu

mbers];
inputStreams[0] = new FileInputStream(args[0]);
inputStreams[1] = new FileInputStream(args[1]);

// Initialize outputStream
FileOutputStream outputStream = new FileOutputStream(args[2]

);

// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

// Closes inputStreams and outputStream
}
catch(Exception exc)
{
exc.printStackTrace();

}
}

Merging with Input/Output Streams
Input:

• PDF Documents (InputStream Array)

Output:

• PDF Document (OutputStream)

Calling XML Publisher APIs 10-21

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
public boolean mergeDocs(InputStream[] inputStreams, OutputStrea

m outputStream)
{
try
{
// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

return true;
}
catch(Exception exc)
{
exc.printStackTrace();
return false;

}
}

Merging with Background to Place Page Numbering
The following code demonstrates how to merge two PDF documents using input streams
to generate a single merged output stream.

To add page numbers:

1. Create a background PDF template document that includes a PDF form field in
the position that you would like the page number to appear on the final output
PDF document.

2. Name the form field @pagenum@.

3. Enter the number in the field from which to start the page numbering. If you do not
enter a value in the field, the start page number defaults to 1.

Input:

• PDF Documents (InputStream Array)

• Background PDF Document (InputStream)

Output:

• PDF Document (OutputStream)

10-22 Oracle XML Publisher User’s Guide

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
public static boolean mergeDocs(InputStream[] inputStreams, Input
Stream backgroundStream, OutputStream outputStream)

{
try
{
// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// Set Background
docMerger.setBackground(backgroundStream);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

return true;
}
catch(Exception exc)
{
exc.printStackTrace();
return false;

}
}

Adding Page Numbers to Merged Documents
The FO Processor supports page numbering natively through the XSL-FO templates, but
if you are merging multiple documents you must use this class to number the complete
document from beginning to end.

The following code example places page numbers in a specific point on the page, formats
the numbers, and sets the start value using the following methods:

• setPageNumberCoordinates (x, y) - sets the x and y coordinates for the page number
position. The following example sets the coordinates to 300, 20.

• setPageNumberFontInfo (font name, size) - sets the font and size for the page
number. If you do not call this method, the default "Helvetica", size 8 is used. The
following example sets the font to "Courier", size 8.

• setPageNumberValue (n, n) - sets the start number and the page on which to begin
numbering. If you do not call this method, the default values 1, 1 are used.

Input:

• PDF Documents (InputStream Arrary)

Output:

• PDF Document (OutputStream)

Calling XML Publisher APIs 10-23

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
public boolean mergeDocs(InputStream[] inputStreams, OutputStrea

m outputStream)
{
try
{
// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// Calls several methods to specify Page Number

// Calling setPageNumberCoordinates() method is necessary to
set Page Numbering

// Please refer to javadoc for more information
docMerger.setPageNumberCoordinates(300, 20);

// If this method is not called, then the default font"(Helv
etica, 8)" is used.

docMerger.setPageNumberFontInfo("Courier", 8);

// If this method is not called, then the default initial va
lue "(1, 1)" is used.

docMerger.setPageNumberValue(1, 1);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

return true;
}
catch(Exception exc)
{
exc.printStackTrace();
return false;

}
}

Setting a Text or Image Watermark
Some documents that are in a draft phase require that a watermark indicating
"DRAFT" be displayed throughout the document. Other documents might require a
background image on the document. The following code sample shows how to use the
PDFDocMerger class to set a watermark.

Setting a Text Watermark
Use the SetTextDefaultWatermark() method to set a text watermark with the following
attributes:

10-24 Oracle XML Publisher User’s Guide

• Text angle (in degrees): 55

• Color: light gray (0.9, 0.9, 0.9)

• Font: Helvetica

• Font Size: 100

• The start position is calculated based on the length of the text

Alternatively, use the SetTextWatermark() method to set each attribute separately. Use
the SetTextWatermark() method as follows:

• SetTextWatermark ("Watermark Text", x, y) - declare the watermark text, and set the
x and y coordinates of the start position. In the following example, the watermark
text is "Draft" and the coordinates are 200f, 200f.

• setTextWatermarkAngle (n) - sets the angle of the watermark text. If this method is
not called, 0 will be used.

• setTextWatermarkColor (R, G, B) - sets the RGB color. If this method is not
called, light gray (0.9, 0.9, 0.9) will be used.

• setTextWatermarkFont ("font name", font size) - sets the font and size. If you do not
call this method, Helvetica, 100 will be used.

The following example shows how to set these properties and then call the
PDFDocMerger.

Input:

• PDF Documents (InputStream)

Output:

• PDF Document (OutputStream)

Calling XML Publisher APIs 10-25

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
public boolean mergeDocs(InputStream inputStreams, OutputStream

outputStream)
{
try
{
// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

// You can use setTextDefaultWatermark() without these detai
led setting

docMerger.setTextWatermark("DRAFT", 200f, 200f); //set text
and place

docMerger.setTextWatermarkAngle(80); //set an
gle

docMerger.setTextWatermarkColor(1.0f, 0.3f, 0.5f); // set R
GB Color

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

return true;
}
catch(Exception exc)
{
exc.printStackTrace();
return false;

}
}

Setting Image Watermark
An image watermark can be set to cover the entire background of a document, or just to
cover a specific area (for example, to display a logo). Specify the placement and size of
the image using rectangular coordinates as follows:

float[] rct = {LowerLeft X, LowerLeft Y, UpperRight
X, UpperRight Y}

For example:

float[] rct = {100f, 100f, 200f, 200f}

The image will be sized to fit the rectangular area defined.

To use the actual image size, without sizing it, define the LowerLeft X and LowerLeft
Y positions to define the placement and specify the UpperRight X and UpperRight Y
coordinates as -1f. For example:

float[] rct = {100f, 100f, -1f, -1f}

10-26 Oracle XML Publisher User’s Guide

Input:

• PDF Documents (InputStream)

• Image File (InputStream)

Output:

• PDF Document (OutputStream)

Example
import java.io.*;
import oracle.apps.xdo.common.pdf.util.PDFDocMerger;
.
.
.
public boolean mergeDocs(InputStream inputStreams, OutputStream

outputStream, String imageFilePath)
{
try
{
// Initialize PDFDocMerger
PDFDocMerger docMerger = new PDFDocMerger(inputStreams, outp

utStream);

FileInputStream wmStream = new FileInputStream(imageFilePath
);

float[] rct = {100f, 100f, -1f, -1f};
pdfMerger.setImageWatermark(wmStream, rct);

// Merge PDF Documents and generates new PDF Document
docMerger.mergePDFDocs();
docMerger = null;

// Closes inputStreams
return true;

}
catch(Exception exc)
{
exc.printStackTrace();
return false;

}
}

Document Processor Engine
The Document Processor Engine provides batch processing functionality to access a
single API or multiple APIs by passing a single XML instance document to specify
template names, data sources, languages, output type, output names, and destinations.

This solution enables batch printing with XML Publisher, in which a single XML
document can be used to define a set of invoices for customers, including the preferred
output format and delivery channel for those customers. The XML format is very flexible
allowing multiple documents to be created or a single master document.

This section:

• Describes the hierarchy and elements of the Document Processor XML file

Calling XML Publisher APIs 10-27

• Provides sample XML files to demonstrate specific processing options

• Provides example code to invoke the processors

Hierarchy and Elements of the Document Processor XML File
The Document Processor XML file has the following element hierarchy:

Requestset
request

delivery
filesystem
print
fax

number
email

message
document

background
text

pagenumber
template

data
This hierarchy is displayed in the following illustration:

The following table describes each of the elements:

Element Attributes Description

requestset xmlns

version

Root element must contain
[xmlns:xapi="http://
xmlns.oracle.com/oxp/
xapi/"] block
The version is not required,
but defaults to "1.0".

request N/A Element that contains the
data and template processing
definitions.

10-28 Oracle XML Publisher User’s Guide

Element Attributes Description

delivery N/A Defines where the generated
output is sent.

document output-type Specify one output that
can have several template
elements. The output-type
attribute is optional. Valid
values are:
pdf (Default)
rtf
html
excel
text

filesystem output Specify this element to save
the output to the file system.
Define the directory path in the
output attribute.

print • printer

• server-alias

The print element can
occur multiple times under
delivery to print one
document to several printers.
Specify the printer attribute
as a URI, such as:"ipp:/
/myprintserver:631/
printers/printername"

fax • server

• server-alias

Specify a URI in the server
attribute, for example: "ipp:
//myfaxserver1:631/
printers/myfaxmachine"

number The number element can occur
multiple times to list multiple
fax numbers. Each element
occurrence must contain only
one number.

email • server

• port

• from

• reply-to

• server-alias

Specify the outgoing mail
server (SMTP) in the server
attribute.
Specify the mail server port in
the port attribute.

Calling XML Publisher APIs 10-29

Element Attributes Description

message • to

• cc

• bcc

• attachment

• subject

The message element can be
placed several times under
the email element. You can
specify character data in the
message element.
You can specify multiple e-mail
addresses in the to, cc and
bcc attributes separated by a
comma.
The attachment value is
either true or false (default). If
attachment is true, then a
generated document will be
attached when the e-mail is
sent.
The subject attribute is
optional.

background where If the background text is
required on a specific page,
then set the where value to the
page numbers required. The
page index starts at 1. The
default value is 0, which places
the background on all pages.

text • title

• default

Specify the watermark text in
the title value.
A default value of "yes"
automatically draws the
watermark with forward slash
type. The default value is yes.

pagenumber • initial-page-index

• initial-value

• x-pos

• y-pos

The initial-page-index
default value is 0.
The initial-value default
value is 1.
"Helvetica" is used for the page
number font.
The x-pos provides lower left
x position.
The y-pos provides lower left
y position.

10-30 Oracle XML Publisher User’s Guide

Element Attributes Description

template • locale

• location

• type

Contains template information.
Valid values for the type
attribute are
pdf
rtf
xsl-fo
etext
The default value is "pdf".

data location Define the location attribute
to specify the location of the
data, or attach the actual XML
data with subelements. The
default value of location
is "inline". It the location
points to either an XML file or
a URL, then the data should
contain an XML declaration
with the proper encoding.
If the location attribute
is not specified, the data
element should contain the
subelements for the actual
data. This must not include an
XML declaration.

XML File Samples
Following are sample XML files that show:

• Simple XML shape

• Defining two data sets

• Defining multiple templates and data

• Retrieving templates over HTTP

• Retrieving data over HTTP

• Generating more than one output

• Defining page numbers

Simple XML sample
The following sample is a simple example that shows the definition of one template
(template1.pdf) and one data source (data1) to produce one output file
(outfile.pdf) delivered to the file system:

Calling XML Publisher APIs 10-31

Example
<?xml version="1.0" encoding="UTF-8" ?>

<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi
">

<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\tmp\outfile.pdf" />

</xapi:delivery>
<xapi:document output-type="pdf">
<xapi:template type="pdf" location="d:\mywork\template1

.pdf">
<xapi:data>
<field1>data1</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

</xapi:requestset>

Dening two data sets
The following example shows how to define two data sources to merge with one
template to produce one output file delivered to the file system:

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\tmp\outfile.pdf"/>

</xapi:delivery>

<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="d:\mywork\template1.pdf">
<xapi:data>
<field1>The first set of data</field1>

</xapi:data>
<xapi:data>
<field1>The second set of data</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

</xapi:requestset>

Dening multiple templates and data
The following example builds on the previous examples by applying two data sources to
one template and two data sources to a second template, and then merging the two into a
single output file. Note that when merging documents, the output-typemust be "pdf".

10-32 Oracle XML Publisher User’s Guide

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\tmp\outfile3.pdf"/>

</xapi:delivery>

<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="d:\mywork\template1.pdf">
<xapi:data>
<field1>The first set of data</field1>

</xapi:data>
<xapi:data>
<field1>The second set of data</field1>

</xapi:data>
</xapi:template>

<xapi:template type="pdf"
location="d:\mywork\template2.pdf">

<xapi:data>
<field1>The third set of data</field1>

</xapi:data>
<xapi:data>
<field1>The fourth set of data</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

</xapi:requestset>

Retrieving templates over HTTP
This sample is identical to the previous example, except in this case the two templates
are retrieved over HTTP:

Calling XML Publisher APIs 10-33

<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\temp\out4.pdf"/>

</xapi:delivery>

<xapi:document output-type="pdf">
<xapi:template type="pdf"
location="http://your.server:9999/templates/template1.pdf"

>
<xapi:data>
<field1>The first page data</field1>

</xapi:data>
<xapi:data>
<field1>The second page data</field1>

</xapi:data>
</xapi:template>
<xapi:template type="pdf"

location="http://your.server:9999/templates/template2.pdf
">

<xapi:data>
<field1>The third page data</field1>

</xapi:data>
<xapi:data>
<field1>The fourth page data</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

</xapi:requestset>

Retrieving data over HTTP
This sample builds on the previous example and shows one template with two data
sources, all retrieved via HTTP; and a second template retrieved via HTTP with its
two data sources embedded in the XML:

10-34 Oracle XML Publisher User’s Guide

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\temp\out5.pdf"/>

</xapi:delivery>

<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="http://your.server:9999/templates/template1.pdf
">

<xapi:data location="http://your.server:9999/data/data_1.x
ml"/>

<xapi:data location="http://your.server:9999/data/data_2.x
ml"/>

</xapi:template>

<xapi:template type="pdf"
location="http://your.server:9999/templates/template2.pdf

">
<xapi:data>
<field1>The third page data</field1>

</xapi:data>
<xapi:data>
<field1>The fourth page data</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

</xapi:requestset>

Generating more than one output
The following sample shows the generation of two outputs: out_1.pdf and
out_2.pdf. Note that a request element is defined for each output.

Calling XML Publisher APIs 10-35

Example
<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\temp\out_1.pdf"/>

</xapi:delivery>
<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="d:\mywork\template1.pdf">
<xapi:data>
<field1>The first set of data</field1>

</xapi:data>
<xapi:data>
<field1>The second set of data</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\temp\out_2.pdf"/>

</xapi:delivery>
<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="d:mywork\template2.pdf">
<xapi:data>
<field1>The third set of data</field1>

</xapi:data>
<xapi:data>
<field1>The fourth set of data</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

</xapi:requestset>

Dening page numbers
The following sample shows the use of the pagenumber element to define page
numbers on a PDF output document. The first document that is generated will begin
with an initial page number value of 1. The second output document will begin with an
initial page number value of 3. The pagenumber element can reside anywhere within
the document element tags.

Note that page numbering that is applied using the pagenumber element will not
replace page numbers that are defined in the template.

10-36 Oracle XML Publisher User’s Guide

<?xml version="1.0" encoding="UTF-8"?>
<xapi:requestset xmlns:xapi="http://xmlns.oracle.com/oxp/xapi">
<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\temp\out7-1.pdf"/>

</xapi:delivery>
<xapi:document output-type="pdf">
<xapi:pagenumber initial-value="1" initial-page-index="1" x-

pos="300" y-pos="20" />
<xapi:template type="pdf"

location="d:\mywork\template1.pdf">
<xapi:data>
<field1>The first page data</field1>

</xapi:data>
<xapi:data>
<field1>The second page data</field1>

</xapi:data>
</xapi:template>

</xapi:document>
</xapi:request>

<xapi:request>
<xapi:delivery>
<xapi:filesystem output="d:\temp\out7-2.pdf"/>

</xapi:delivery>
<xapi:document output-type="pdf">
<xapi:template type="pdf"

location="d:\mywork\template2.pdf">
<xapi:data>
<field1>The third page data</field1>

</xapi:data>
<xapi:data>
<field1>The fourth page data</field1>

</xapi:data>
</xapi:template>
<xapi:pagenumber initial-value="3" initial-page-index="1" x-

pos="300" y-pos="20" />
</xapi:document>

</xapi:request>

</xapi:requestset>

Invoke Processors
The following code samples show how to invoke the document processor engine using
an input file name and an input stream.

Invoke Processors with Input File Name
Input:

• Data file name (String)

• Directory for Temporary Files (String)

Calling XML Publisher APIs 10-37

Example
import oracle.apps.xdo.batch.DocumentProcessor;
.
.
.
public static void main(String[] args)
{

.

.

.
try
{
// dataFile --- File path of the Document Processor XML
// tempDir --- Temporary Directory path
DocumentProcessor docProcessor = new DocumentProcessor(data

File, tempDir);
docProcessor.process();

}
catch(Exception e)
{

e.printStackTrace();
System.exit(1);

}
System.exit(0);

}

Invoke Processors with InputStream
Input:

• Data file (InputStream)

• Directory for Temporary Files (String)

10-38 Oracle XML Publisher User’s Guide

Example
import oracle.apps.xdo.batch.DocumentProcessor;
import java.io.InputStream;
.
.
.
public static void main(String[] args)
{

.

.

.
try
{
// dataFile --- File path of the Document Processor XML
// tempDir --- Temporary Directory path
FileInputStream fIs = new FileInputStream(dataFile);

DocumentProcessor docProcessor = new DocumentProcessor(fIs,
tempDir);

docProcessor.process();
fIs.close();

}
catch(Exception e)
{

e.printStackTrace();
System.exit(1);

}
System.exit(0);

}

XML Publisher Properties
The FO Processor supports PDF security and other properties that can be applied to
your final documents. Security properties include making a document unprintable and
applying password security to an encrypted document.

Other properties allow you to define font subsetting and embedding. If your template
uses a font that would not normally be available to XML Publisher at runtime, you can
use the font properties to specify the location of the font. At runtime XML Publisher
will retrieve and use the font in the final document. For example, this property might
be used for check printing for which a MICR font is used to generate the account and
routing numbers on the checks.

See XML Publisher Properties, page 8-2 for the full list of properties.

Setting Properties
The properties can be set in two ways:

• At runtime, specify the property as a Java Property object to pass to the FO Processor.

• Set the property in a configuration file.

• Set the property in the template (RTF templates only). See Setting Properties, page
2-76 in the RTF template for this method.

Calling XML Publisher APIs 10-39

Passing Properties to the FO Engine
To pass a property as a Property object, set the name/value pair for the property prior to
calling the FO Processor, as shown in the following example:

Input:

• XML file name (String)

• XSL file name (String)

Output:

• PDF file name (String)

Example
import oracle.apps.xdo.template.FOProcessor;
.
.
.
public static void main(String[] args)
{

FOProcessor processor = new FOProcessor();
processor.setData(args[0]); // set XML input file
processor.setTemplate(args[1]); // set XSL input file
processor.setOutput(args[2]); //set (PDF) output file
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
Properties prop = new Properties();
prop.put("pdf-security", "true"); // PDF security

control
prop.put("pdf-permissions-password", "abc"); // permissions p

assword
prop.put("pdf-encription-level", "0"); // encryption le

vel
processor.setConfig(prop);
// Start processing
try
{

processor.generate();
}
catch (XDOException e)
{

e.printStackTrace();
System.exit(1);

}

System.exit(0);
}

Passing a Conguration File to the FO Processor
The following code shows an example of passing the location of a configuration file.

Input:

• XML file name (String)

• XSL file name (String)

Output:

10-40 Oracle XML Publisher User’s Guide

• PDF file name (String)

import oracle.apps.xdo.template.FOProcessor;
.
.
.
public static void main(String[] args)
{
FOProcessor processor = new FOProcessor();
processor.setData(args[0]); // set XML input file
processor.setTemplate(args[1]); // set XSL input file
processor.setOutput(args[2]); //set (PDF) output file
processor.setOutputFormat(FOProcessor.FORMAT_PDF);
processor.setConfig(“/tmp/xmlpconfig.xml”);
// Start processing
try
{

processor.generate();
} catch (XDOException e)
{ e.printStackTrace();

System.exit(1);
}
System.exit(0);

}

Passing Properties to the Document Processor
Input:

• Data file name (String)

• Directory for Temporary Files (String)

Output:

• PDF FIle

Calling XML Publisher APIs 10-41

Example
import oracle.apps.xdo.batch.DocumentProcessor;
.
.
.
public static void main(String[] args)
{

.

.

.
try
{
// dataFile --- File path of the Document Processor XML
// tempDir --- Temporary Directory path
DocumentProcessor docProcessor = new DocumentProcessor(data

File, tempDir);
Properties prop = new Properties();
prop.put("pdf-security", "true"); // PDF security co

ntrol
prop.put("pdf-permissions-password", "abc"); // permissions

password
prop.put("pdf-encription-level", "0"); // encryption level

processor.setConfig(prop);
docProcessor.process();

}
catch(Exception e)
{

e.printStackTrace();
System.exit(1);

}
System.exit(0);

}

Applications Layer APIs
The applications layer of XML Publisher allows you to store and manager data sources
and templates through the Template Manager user interface via the XML Publisher
Administrator responsibility. You can also access and manipulate these objects via an
application program interfaces. This section describes the APIs that are available to a
programmer.

Data sources and templates are stored in the database. This includes the metadata
describing the object and the physical object itself (for example, an RTF file). Use these
APIs to register, update, and retrieve information about datasources and templates. You
can also call use the APIs to call XML Publisher to apply a template to a data source to
generate output documents directly (without going through the concurrent manager).

In the XML Publisher schema, each data source can have multiple templates assigned
to it. However, templates cannot exist without a data source. The following graphic
illustrates this relationship:

10-42 Oracle XML Publisher User’s Guide

Datasource APIs
The following APIs are provided to access and manipulate the data definitions
programmatically:

• DataSource Class

• DataSourceHelper Class

DataSource Class
The data source acts as a placeholder object against which you register templates. The
DataSource class represents a single data source definition entry. This class provides the
following methods to set and get properties from the data source:

DataSourceHelper Class
This is a utility class that can be used to manage data source definition entries in the
Template Manager repository.

A data source definition entry is a logical unit that represents a data source for the
template. Each data source definition entry can have one data defintion in XSD (XML
Schema Definition) format, and one sample data file in XML. Each data source definition
entry can have one or more display names and descriptions for each language. The
appropriate name and description will be picked up and shown to users based on the
user’s session language.

Getting AppsContext
All methods require the AppsContext instance to communicate with the Applications
database. Use one of the following methods to get the AppsContext instance in your
code.

1. If you are using this class in OA Framework, obtain AppsContext by calling

((OADBTransactionImpl)am.getOADBTransaction()).
getAppsContext()

where am is your OA ApplicationModule.

2. If you are using this class in a Java concurrent program, pass CpContext as an
AppsContext.

3. Otherwise create AppsContext from the DBC file. If you are running a servlet/JSP in
Applications, you can obtain the full path to the DBC file by calling

System.getProperty("JTFDBCFILE") or System.getProperty("BNEDBCF
ILE")

Calling XML Publisher APIs 10-43

Creating Data Source Denition Entries
Add a new data source definition entry to the Template Manager repository as follows:

1. Create an instance of the DataSource class by calling the DataSource.create
Instance() method.

2. Set the attributes of the instance.

3. Pass it to the DataSourceHelper.createDataSource()method.

Example
// Create an instance
DataSource d = DataSource.createInstance(ctx, "XDO", "TestDataSou
rce");
// Set properties
d.setDescription("This is the test data source entry.");
d.setStartDate(new java.sql.Date(System.currentTimeMillis()));
d.setName("Test Data Source !");
d.setStatus(TypeDefinitions.DATA_SOURCE_STATUS_ENABLED);
// Call createDataSource() to create an entry into the repository
DataSourceHelper.createDataSource(ctx, d);

Getting and Updating Data Source Denition Entries
Update data source definition entries from the repository by calling the
DataSourceHelper.getDataSource() method. It will return an array of
DataSource instances. Update these instances by using the data source "set" methods.

Example
// Get data source definition entries
DataSource[] d = DataSourceHelper.getDataSource(ctx, "XDO", "%XDO
%");

// Update properties
d.setDescription("New data source entry.");
d.setStartDate(new java.sql.Date(System.currentTimeMillis()));
d.setName("New Data Source name");
d.setStatus(TypeDefinitions.DATA_SOURCE_STATUS_ENABLED);
// Call updateDataSource() to commit the update in the repository
DataSourceHelper.updateDataSource(ctx, d);

Deleting Data Source Denition Entries
Delete data source definition entries by calling theDataSource.deleteDataSource()
method. This function does not actually delete the record from the repository, but
marks it as "disabled" for future use. You can change the status anytime by calling the
DataSource.updateDataSourceStatus() method.

Adding, Updating, and Deleting Schema Files and Sample Files
You can add, update and delete the data source schema definition file and the sample
XML file by calling methods defined in the DataSourceHelper class. Please note that
unlike the deleteDataSource() method described above, these methods actually
delete the schema file and sample records from the repository.

10-44 Oracle XML Publisher User’s Guide

Example
// Add a schema definition file
DataSourceHelper.addSchemaFile(ctx, "XDO", "TestDataSource",
"schema.xsd", new FileInputStream("/path/to/schema.xsd"));

// Add a sample xml data file
DataSourceHelper.addSampleFile(ctx, "XDO", "TestDataSource",
"sample.xml", new FileInputStream("/path/to/sample.xml"));

// Update a schema definition file
DataSourceHelper.addSchemaFile(ctx, "XDO", "TestDataSource",
new FileInputStream("/path/to/new_schema.xsd"));

// Update a sample xml data file
DataSourceHelper.addSampleFile(ctx, "XDO", "TestDataSource",
new FileInputStream("/path/to/new_sample.xml"));

// Delete a schema definition file
DataSourceHelper.deleteSchemaFile(ctx, "XDO", "TestDataSource");
// Delete a sample xml data file
DataSourceHelper.deleteSampleFile(ctx, "XDO", "TestDataSource");

Getting Schema Files and Sample Files from the Repository
You can download schema files or sample files from the repository by calling the
getSchemaFile() or the getSampleFile() method. These methods return an
InputStream connected to the file contents as a return value.

The sample code is as follows:

Example
// Download the schema definition file from the repository
InputStream schemaFile =
DataSourceHelper.getSchemaFile(ctx, "XDO", "TestDataSource",);

// Download the XML sample data file from the repository
InputStream sampleFile =
DataSourceHelper.getSampleFile(ctx, "XDO", "TestDataSource",);

Template APIs
Multiple template objects can be associated with a single data source. The Template class
represents a single template instance. The TemplateHelper class is a utility class used to
create and update template objects in the Template Manager.

The Template Class
The Template class represents a single template object in the template manager. It
is associated with a data source object. The class has several get and set methods to
manipulate the template object.

TemplateHelper Class
The TemplateHelper class is a utility class to manage the template entries in the Template
Manager repository. It consists of a set of static utility methods.

Calling XML Publisher APIs 10-45

A template entry is a logical unit that represents a single template. Each template entry
has a corresponding data source definition entry that defines how the data looks for this
template. Each template entry has one physical template file for each language: the
locale-specific template files are uploaded separately; and for each translated XLIFF
associated with a template, XML Publisher creates and stores a separate XSL file.

Each template entry has one display name and description for each language. These
names will be picked up and used when the Template Manager user interface shows
the template entry name.

Getting the AppsContext Instance
Some methods require the AppsContext instance to communicate with the Applications
database. Get the AppsContext instance in your code using one of the following options:

1. If you are using this class in OA Framework, obtain AppsContext by
calling ((OADBTransactionImpl)am.getOADBTransaction()).
getAppsContext()

where am is your OAApplicationModule.

2. If you are using this class in a Java concurrent program, pass CpContext as an
AppsContext.

3. Otherwise create AppsContext from the DBC file. If you are running a servlet/JSP in
Applications, you can obtain the full path to the DBC file by calling

System.getProperty("JTFDBCFILE") or System.getProperty("BNEDBCF
ILE")

Getting the OAApplicationModule Instance
Some methods require the OAApplicationModule instance to communicate with
the Applications database. Get the OAApplicationModule instance in your code
as follows:

1. If you are using the TemplateHelper in OA Framework, you already have an
OAApplicationModule instance

2. If you already have AppsContext, you can create the OAApplicationModule
instance by using oracle.apps.fnd.framework.server.
OAApplicationModuleUtil

It is recommended that you use AppsContext to call APIs because the latest
development is based on the APIs that take AppsContext. You can still use APIs that
take OAApplicationModule, but they internally call corresponding APIs that take
AppsContext.

Creating Template Entries
To add a new template entry to the Template Manager repository:

1. Create an instance of the Template class by calling the Template.create
Instance() method

2. Set the attributes of the instance.

3. Pass it to the TemplateHelper.createTemplate()method

10-46 Oracle XML Publisher User’s Guide

Example
// Create an instance
Template t = Template.createInstance(appsContext, "XDO", "TestTem
plate",

TypeDefinitions.TEMPLATE_TYPE_PDF, "XDO", "TestTemplate");

// Set properties
t.setDescription("This is the test template entry.");
t.setStartDate(new java.sql.Date(System.currentTimeMillis()));
t.setName("Test template !");
t.setStatus(TypeDefinitions.TEMPLATE_STATUS_ENABLED);
// Call createTemplate() to create an entry into the repository
TemplateHelper.createTemplate(am, t);

Getting and Updating Template Entries
Get template entries from the repository by calling theTemplateHelper.
getTemplate() method or the getTemplates() method. Update the entry
information by using use these instances.

Example
// Get active template entries
Template[] t = TemplateHelper.getTemplates(appsContext, "XDO", "X
DO%", true);

// Update properties
t[0].setDescription("updated template entry.");
t[0].setStartDate(new java.sql.Date(System.currentTimeMillis()));
t[0].setName("updated template entry name");
t[0].setStatus(TypeDefinitions.TEMPLATE_STATUS_ENABLED);

// Call updateTemplate() to commit the update in the repository
TemplateHelper.updateTemplate(appsContext, t[0]);

Deleting Template Entries
Delete template entries by calling the Template.deleteTemplate() method. The
method does not actually delete the record from the repository, but marks it
as "disabled" for future use. You can change the status anytime by calling the
Template.updateTemplateStatus() method.

Adding, Updating, and Deleting Template Files
You can add, update and delete template files by calling methods defined in the
TemplateHelper class. Please note that unlike the template entries, deleting template
files actually deletes the record from the repository.

The following code sample demonstrates adding, deleting, and updating a template file:

Calling XML Publisher APIs 10-47

Example
// Add English template file to the template entry
TemplateHelper.addTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US", // ISO territory code of the template
Template.TEMPLATE_TYPE_PDF, // Type of the template file
"us.pdf", // Filename of the template file
new FileInputStream("/path/to/us.pdf")); // Template file

// Add Japanese template file to the template entry
TemplateHelper.addTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"ja", // ISO language code of the template
"JP", // ISO territory code of the template
Template.TEMPLATE_TYPE_PDF, // Type of the template file
"ja.pdf", // Filename of the template file
new FileInputStream("/path/to/ja.pdf")); // Template file

// Update English template file to the template entry
TemplateHelper.updateTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US", // ISO territory code of the template
Template.TEMPLATE_TYPE_PDF, // Type of the template file
"us.pdf", // Filename of the template file
new FileInputStream("/path/to/new/us.pdf")); // Template file

// Delete Japanese template file to the template entry
TemplateHelper.deleteTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"ja", // ISO language code of the template
"JP"); // ISO territory code of the template

Getting Template Files
Download template file contents from the repository by calling thegetTemplateFile()
methods. These methods return an InputStream connected to the template file as a
return value.

Example
// Download the English template file from the repository
InputStream in = TemplateHelper.getTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US"); // ISO territory code of the template

10-48 Oracle XML Publisher User’s Guide

Processing Templates
You can apply a template, stored in the Template Manager, to an XML data source by
calling one of the processTemplate() methods. You need to pass the OutputStream object
for the destination of the processed document.

Example
// Process template
TemplateHelper.processTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US", // ISO territory code of the template
dataInputStream, // XML data for the template
TemplateHelper.OUTPUT_TYPE_PDF, // Output type of the procesed

document
properties, // Properties for the template processing
docOutputStream) // OutputStream where the processed docum

ent goes.

Pass the properties for template processing by passing a Properties object. You can pass
null if you have no properties to pass to the XML Publisher processors.

Passing XSL Parameters to RTF/FO Templates:
1. Set the parameter names and values in a Properties object.

All property names for RTF/XSL templates must start with "xslt.".

The parameter value must be in single quotes.

Example
String <parameter_name> = "name";
String <parameter_value> = "value";
Properties props = new Properties();
...
props.put("xslt.<parameter_name>", "’<parameter_value>’");
...
String <parameter_name> = "name";

2. Set this properties object when you call a TemplateHelper.processTemplate() method.

Example
TemplateHelper.processTemplate(appsContext, "OKC", "OKCTERMS", "e
n", "US", pData, props, pOutput);

3. Define XSL parameters in an RTF/FO template using the following syntax:

<xsl:param name="parameter_name" select "default_value" xdofo:ctx
="begin"/>

In addition to passing the properties that you set, the TemplateHelper class also looks up
the following locations to get system level properties if available:

1. Java system properties for OA specific properties, such as the OA_MEDIA location.

2. System configuration file located at {java.home}/lib/xdo.cfg

Calling XML Publisher APIs 10-49

If there are conflicts between system level properties and user level properties that you
pass, user level properties will take precedence.

Creating and Processing EFT/EDI Templates
The TemplateHelper class supports EFT/EDI templates. You can create EFT/EDI
template entries with Template.TEMPLATE_TYPE_ETEXT template type. You can
also process the EFT/EDI templates by using theprocessTemplate() method
in the TemplateHelper. You can assign OUTPUT_TYPE_ETEXT output type when
you process EFT/EDI templates. If you need to supply parameters to the EFT/EDI
processing engine, you can pass those parameters as a Properties object when you call
the processTemplate() method.

Example
// Process EFT/EDI template
TemplateHelper.processTemplateFile(
appsContext, // AppsContext
"XDO", // Application short name of the template
"TestTemplate", // Template code of the template
"en", // ISO language code of the template
"US", // ISO territory code of the template
dataInputStream, // XML data for the template
TemplateHelper.OUTPUT_TYPE_ETEXT, // Output type of the procese

d document
properties, // Properties for the template processing

.
// All properties will be passed to EFT/E

DI engine
docOutputStream) // OutputStream where the processed docum

ent goes.

If you need more control for EFT/EDI template processing (such as for getting/setting
context parameters for the EFT/EDI processing engine), you can call EFTGenerator to
process templates.

Example
import oracle.apps.xdo.template.eft.EFTGenerator;

…

// Process EFT/EDI template with EFTGenerator class
EFTGenerator generator = new EFTGenerator();
// Get the template file from template manager repository
// and set it.
generator.loadXSL(
TemplateHelper.getTemplateFile(ctx, "XDO", "TestTemplate", "en

", "US"));
// Set the data XML
generator.loadXML(dataInputStream);
// Set context param
generator.setContextParam(PARAM1, PARAM1_VALUE);
// Process the template
generator.process(resultOutputStream);
// Get context param
String param2 = generator.getContextParam(PARAM2);

10-50 Oracle XML Publisher User’s Guide

Language Fallback Mechanism
Both the getTemplateFile() and the processTemplate() methods support
the language fallback mechanism. This mechanism provides the most appropriate
InputStream even if there is no template file to match the language criteria. The priority
of the language fallback is as follows:

1. Returns the template file that matches the given language and territory.

2. Returns the template file that matches the given language and is territory
independent (the territory value is "00").

3. Returns the default template. See The Default Template, page 5-5 for more
information on assigning a default template file.

For example, the following table shows a sample of templates in the Template Manager
repository:

Template File ISO Language Code ISO Territory Code Default?

A en US no

B en 00 no

C fr FR yes

D ja JP no

The following table shows the template that will be returned if you pass the given ISO
language/territory code combinations:

ISO Language Code ISO Territory Code Template Returned

en US A

en GB B

en null B

fr FR C

ja JP D

de DE C

It is recommended that you pass both the ISO language code and territory code explicitly
to best obtain the target template file.

Template Validation
By default, when you call getTemplateFile() or processTemplate(), XML
Publisher runs validation logic against START_DATE, END_DATE, and
TEMPLATE_STATUS set in the template entry. If an invalid entry is found, the
following exceptions are thrown accordingly: TemplateExpiredException,
TemplateNotYetValidException, StatusDisabledException. These
exceptions are subclasses of the oracle.apps.xdo.XDOException so you can catch
XDOException if you want to catch all these exceptions at one time. To turn off this
validation mode, set the java system property xdo.TemplateValidation=false. The
default mode is set to true.

Calling XML Publisher APIs 10-51

Translatable Templates
You can define a translatable template for each template code. The text in the template
file can be retrieved in XLIFF format to be translated and merged back into the file, using
the getXLIFF() and uploadXLIFF() methods.

• getXLIFF() - Downloads the translatable boilerplate text for a template in xliff
format. A translatable template file must exist for this template, else the return value
will be null. The specified locale will be added to the target-language attribute of the
resulting document. If translations are not available for this locale, the resulting xliff
document will have empty elements.

• uploadXLIFF() - Uploads the translations for a template in xliff format. The xliff
file must contain a valid target-language attribute.

10-52 Oracle XML Publisher User’s Guide

11
Delivery Manager

Introduction
The Delivery Manager is a set of Java APIs that allow you to control the delivery of your
XML Publisher documents. Use the Delivery Manager to:

• Deliver documents through established delivery channels (e-mail, fax, printer,
WebDAV, FTP, Secure FTP, AS2, or HTTP) or custom delivery channels

• Track the status of each delivery

• Redeliver documents

Using the Delivery Manager
To use the Delivery Manager follow these steps:

1. Create a DeliveryManager instance

2. Create a DeliveryRequest instance using the createRequest() method

3. Add the request properties (such as DeliveryRequest destination). Most properties
require a String value. See the supported properties for each delivery channel for
more information.

4. Set your document to the DeliveryRequest.

5. Call submit() to submit the delivery request.

One delivery request can handle one document and one destination. This facilitates
monitoring and resubmission, if necessary.

DeliveryRequest allows you to set the documents in three ways as follows:

• Get OutputStream from the DeliveryRequest and write the document to the
OutputStream. You do not need to close the OutputStream to call the submit()
method immediately after you finish writing the document to the OutputStream.

• Set InputStream of the document to DeliveryRequest. The DeliveryRequest will read
the InputStream when you call submit() for the first time. The DeliveryRequest does
not close the InputStream so you must ensure to close it.

• Set the file name of the document to DeliveryRequest.

The Delivery Manager supports streamlined delivery when you set the direct mode. See
Direct and Buffering Modes, page 11-24.

The follow delivery channels are described in this document:

Delivery Manager 11-1

• E-mail

• Printer

• Fax

• WebDAV

• FTP

• Secure FTP

• HTTP

• AS2

Delivering Documents via e-Mail
The following sample demonstrates delivery via E-mail:

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_S

MTP_EMAIL);

// set email subject
req.addProperty(DeliveryPropertyDefinitions.SMTP_SUBJECT, "te

st mail");
// set SMTP server host
req.addProperty(
DeliveryPropertyDefinitions.SMTP_HOST, "mysmtphost");

// set the sender email address
req.addProperty(DeliveryPropertyDefinitions.SMTP_FROM, "mynam

e@mydomain.com");
// set the destination email address
req.addProperty(
DeliveryPropertyDefinitions.SMTP_TO_RECIPIENTS, "user1@mydo

main.com, user2@mydomain.com");
// set the content type of the email body
req.addProperty(DeliveryPropertyDefinitions.SMTP_CONTENT_TYPE

, "application/pdf");
// set the document file name appeared in the email
req.addProperty(DeliveryPropertyDefinitions.SMTP_CONTENT_FILE

NAME, "test.pdf");
// set the document to deliver
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

The following table lists the supported properties:

11-2 Oracle XML Publisher User’s Guide

Property Description

SMTP_TO_RECIPIENTS Required
Enter multiple recipients separated by a
comma (example: "user1@mydomain.com,
user2@mydomain.com")

SMTP_CC_RECIPIENTS Optional
Enter multiple recipients separated by a comma.

SMTP_BCC_RECIPIENTS Optional
Enter multiple recipients separated by a comma.

SMTP_FROM Required
Enter the e-mail address of the sending party.

SMTP_REPLY_TO Optional
Enter the reply-to e-mail address.

SMTP_SUBJECT Required
Enter the subject of the e-mail.

SMTP_CHARACTER_ENCODING Optional
Default is "UTF-8".

SMTP_ATTACHMENT Optional
If you are including an attachment, enter the
attachment object name.

SMTP_CONTENT_FILENAME Required
Enter the file name of the document
(example: invoice.pdf)

SMTP_CONTENT_TYPE Required
Enter the MIME type.

SMTP_SMTP_HOST Required
Enter the SMTP host name.

SMTP_SMTP_PORT Optional
Enter the SMTP port. Default is 25.

SMTP_SMTP_USERNAME Optional
If the SMTP server requires authentication, enter
your username for the server.

SMTP_SMTP_PASSWORD Optional
If the SMTP server requires authentication, enter
the password for the username you entered.

SMTP_ATTACHMENT_FIRST Optional
If your e-mail contains an attachment and
you want the attachment to appear first, enter
"true". If you do not want the attachment to
appear first, enter "false".

Delivery Manager 11-3

Dening Multiple Recipients
The e-mail delivery server channel supports multiple documents and multiple
destinations per request. The following example demonstrates multiple TO and CC
addresses:

Example
// set the TO email addresses
req.addProperty(
DeliveryPropertyDefinitions.SMTP_TO_RECIPIENTS,
"user1@mydomain.com", user2@mydomain.com, user3@mydomain.c

om");

// set the CC email addresses
req.addProperty(
DeliveryPropertyDefinitions.SMTP_CC_RECIPIENTS,
"user4@mydomain.com, user5@mydomain.com, user6@mydomain.co

m");

Attaching Multiple Documents into One Request
Use the Attachment utility class to attach multiple documents into one request. Sample
usage is as follows:

11-4 Oracle XML Publisher User’s Guide

Example
// Properties for Attachment

Hashtable props = new Hashtable();
// Set encoding property for the non-ASCII file names.
// It’s optional. Default value is "UTF-8"
props.put(DeliveryPropertyDefinitions.SMTP_CHARACTER_ENCODING,

"UTF-8");
:
:

(You can append other properties also)
:
:

// create Attachment instance
Attachment m = new Attachment(props);

// add attachment files
m.addAttachment(

"/pdf_sample/pdfTest5.pdf", // source file name
"a1.pdf", // file name appeared on

the email
"application/pdf"); // content type

m.addAttachment(
"/rtf_sample/rtfsample_en00.rtf", // source file name
"a2.rtf", // file name appeared on

the email
"application/rtf"); // content type

m.addAttachment(
"/xml_sample/pdfTest5.xml", // source file name
"a3.xml", // file name appeared on

the email
"text/xml"); // content type

:
:

req.addProperty(DeliveryPropertyDefinitions.SMTP_ATTACHMENT, m)
;

Attaching HTML Documents
You can attach HTML documents into one request. If you have references to image
files located in the local file system in your HTML document, the Attachment utility
automatically attaches those image files also. The sample usage is as follows:

Example
Attachment m = new Attachment();
m.addHtmlAttachment("/path/to/my.html");
:
:

req.addProperty(DeliveryPropertyDefinitions.SMTP_ATTACHMENT, m)
;

Delivery Manager 11-5

Displaying the Attachment at the top of the e-mail
If you want to show your attachment at the top of the e-mail, set the property
SMTP_ATTACHMENT_FIRST to "true". Sample usage is as follows.

Example
Attachment m = new Attachment();
m.addHtmlAttachment("/path/to/my.html");
:
:

req.addProperty(DeliveryPropertyDefinitions.SMTP_ATTACHMENT_FIR
ST, "true");

:

Providing Username and Password for Authentication
If the SMTP server requires authentication, you can specify the username and password
to the delivery request.

Example
:
req.addProperty(DeliveryPropertyDefinitions.SMTP_USERNAME, "sco

tt");
req.addProperty(DeliveryPropertyDefinitions.SMTP_PASSWORD, "tig

er");
:

Delivering Your Document to a Printer
The Delivery Server supports Internet Printing Protocol (IPP) as defined in RFC 2910 and
2911 for the delivery of documents to IPP-supported printers or servers, such as CUPS.

Common Unix Printing System (CUPS) is a free, server-style, IPP-based software
that can accept IPP requests and dispatch those requests to both IPP and non-IPP
based devices, such as printers and fax machines. See http://www.cups.org/ for more
information about CUPS. See Setting Up Cups, page 11-36for additional information
about setting up CUPS in your system.

Following is a code sample for delivery to a printer:

11-6 Oracle XML Publisher User’s Guide

http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/
http://www.cups.org/

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_I

PP_PRINTER);

// set IPP printer host
req.addProperty(DeliveryPropertyDefinitions.IPP_HOST, "myhost

");
// set IPP printer port
req.addProperty(DeliveryPropertyDefinitions.IPP_PORT, "631");
// set IPP printer name
req.addProperty(DeliveryPropertyDefinitions.IPP_PRINTER_NAME,

"/printers/myprinter");
// set the document format
req.addProperty(DeliveryPropertyDefinitions.IPP_DOCUMENT_FORM

AT,
DeliveryPropertyDefinitions.IPP_DOCUMENT_FORMAT_POSTSCRIPT)

;
// set the document
req.setDocument("/document/invoice.ps");

// submit the request
req.submit();
// close the request
req.close();

The following properties are supported. A string value is required for each
property, unless otherwise noted. Note that printer-specific properties such as
IPP_SIDES, IPP_COPIES and IPP_ORIENTATION depend on the printer capabilities. For
example, if the target printer does not support duplex printing, the IPP_SIDES setting
will have no effect.

Property Description

IPP_HOST Required
Enter the host name.

IPP_PORT Optional
Default is 631.

IPP_PRINTER_NAME Required
Enter the name of the printer that is to receive
the output (example: /printers/myPrinter).

IPP_AUTHTYPE Optional
Valid values for authentication type are:
IPP_AUTHTYPE_NONE - no authentication
(default)
IPP_AUTHTYPE_BASIC - use HTTP basic
authentication
IPP_AUTHTYPE_DIGEST - use HTTP digest
authentication

Delivery Manager 11-7

Property Description

IPP_USERNAME Optional
Enter the username for HTTP authentication.

IPP_PASSWORD Optional
Enter the password for HTTP authentication.

IPP_ENCTYPE Optional
The encryption type can be set to either of the
following:
IPP_ENCTYPE_NONE - no encryption (default)
IPP_ENCTYPE_SSL - use Secure Socket Layer

IPP_USE_FULL_URL Optional
Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or "false"
(default).

IPP_USE_CHUNKED_BODY Optional
Valid values are "true" (default) to use HTTP
chunked transfer coding for the message
body, or "false".

IPP_ATTRIBUTE_CHARSET Optional
Attribute character set of the IPP request.
Default is "UTF-8".

IPP_NATURAL_LANGUAGE Optional
The natural language of the IPP request. Default
is "en".

IPP_JOB_NAME Optional
Job name of the IPP request.

IPP_COPIES Optional
Define the number of copies to print
(example: "1" , "5", "10"). Default is 1.

IPP_SIDES Optional
Enable two-sided printing. This setting will be
ignored if the target printer does not support
two-sided printing. Valid values are:
IPP_SIDES_ONE_SIDED - default
IPP_SIDES_TWO_SIDED_LONG_EDGE
- prints both sides of paper for binding long
edge.
IPP_SIDES_TWO_SIDED_SHORT_EDGE
- prints both sides of paper for binding short
edge.

11-8 Oracle XML Publisher User’s Guide

Property Description

IPP_ORIENTATIONS Optional
Sets the paper orientation. This setting will be
ignored if the target printer does not support
orientation settings. Valid values are:
IPP_ORIENTATIONS_PORTRAIT (default)
IPP_ORIENTATIONS_LANDSCAPE

IPP_DOCUMENT_FORMAT Optional
The target printer must support the specified
format. Valid values are:
IPP_DOCUMENT_FORMAT_POSTSCRIPT
IPP_DOCUMENT_FORMAT_PLAINTEXT
IPP_DOCUMENT_FORMAT_PDF
IPP_DOCUMENT_FORMAT_OCTETSTREAM
(default)

Printing over an HTTP Proxy Server
To deliver documents to IPP printers or fax machines over an HTTP proxy server, you
may encounter delivery problems due to differences in the HTTP implementations
between CUPS and the proxy servers. Setting the following two properties can resolve
most of these problems:

• DeliveryPropertyDefinitions.IPP_USE_FULL_URL - set to "true"

• DeliveryPropertyDefinitions.IPP_USE_CHUNKED_BODY - set to "false"

Delivering Your Documents via Fax
The delivery system supports the delivery of documents to fax modems configured on
CUPS. You can configure fax modems on CUPS with efax (http://www.cce.com/efax/)
and FAX4CUPS (http://www.gnu.org/directory/productivity/special/fax4CUPS.html).

Sample code for fax delivery is as follows:

Delivery Manager 11-9

http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.cce.com/efax/
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_I

PP_FAX);

// set IPP fax host
req.addProperty(DeliveryPropertyDefinitions.IPP_HOST, "myhost

");
// set IPP fax port
req.addProperty(DeliveryPropertyDefinitions.IPP_PORT, "631");
// set IPP fax name
req.addProperty(DeliveryPropertyDefinitions.IPP_PRINTER_NAME,

"/printers/myfax");
// set the document format
req.addProperty(DeliveryPropertyDefinitions.IPP_DOCUMENT_FORM

AT, "application/postscript");
// set the phone number to send
req.addProperty(DeliveryPropertyDefinitions.IPP_PHONE_NUMBER,

"9999999");
// set the document
req.setDocument("/document/invoice.pdf");

// submit the request
req.submit();
// close the request
req.close();

The supported properties are the same as those supported for printer documents, plus
the following:

Property Description

IPP_PHONE_NUMBER Required
Enter the fax number.

Delivering Your Documents to WebDAV Servers
The following is sample code for delivery to a WebDAV server:

11-10 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_W

EBDAV);

// set document content type
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_CONTENT_TY

PE, "application/pdf");
// set the WebDAV server hostname
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_HOST, "myw

ebdavhost");
// set the WebDAV server port number
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_PORT, "80"

);
// set the target remote directory
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_REMOTE_DIR

ECTORY, "/content/");
// set the remote filename
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_REMOTE_FIL

ENAME, "xdotest.pdf");

// set username and password to access WebDAV server
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_USERNAME,

"xdo");
req.addProperty(DeliveryPropertyDefinitions.WEBDAV_PASSWORD,

"xdo");
// set the document
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

The following properties are supported. A String value is required for each, unless
otherwise noted.

Delivery Manager 11-11

Property Description

WEBDAV_CONTENT_TYPE Required
Enter the document content type (example:
"application/pdf").

WEBDAV_HOST Required
Enter the server host name.

WEBDAV_PORT Optional
Enter the server port number.
Default is 80.

WEBDAV_REMOTE_DIRECTORY Required.
Enter the remote directory name (example: "/
myreports/").

WEBDAV_REMOTE_FILENAME Required.
Enter the remote file name.

WEBDAV_AUTHTYPE Optional
Valid values for authentication type are:
WEBDAV_AUTHTYPE_NONE - no
authentication (default)
WEBDAV_AUTHTYPE_BASIC - use HTTP
basic authentication
WEBDAV_AUTHTYPE_DIGEST - use HTTP
digest authentication

WEBDAV_USERNAME Optional
Enter the username for HTTP authentication.

WEBDAV_PASSWORD Optional
Enter the password for HTTP authentication.

WEBDAV_ENCTYPE Optional
Valid values for encryption type are:
WEBDAV_ENCTYPE_NONE - no encryption
(default)
WEBDAV_ENCTYPE_SSL - use Secure Socket
Layer

WEBDAV_USE_FULL_URL Optional
Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or "false"
(default).

WEBDAV_USE_CHUNKED_BODY Optional
Valid values are "true" (default) to use HTTP
chunked transfer coding for the message
body, or "false".

11-12 Oracle XML Publisher User’s Guide

Deliver Your Documents Using FTP
The following is sample code for delivery to a FTP server:

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_F

TP);

// set hostname of the FTP server
req.addProperty(DeliveryPropertyDefinitions.FTP_HOST, "myftph

ost");
// set port# of the FTP server
req.addProperty(DeliveryPropertyDefinitions.FTP_PORT, "21");
// set username and password to access WebDAV server
req.addProperty(DeliveryPropertyDefinitions.FTP_USERNAME, "xd

o");
req.addProperty(DeliveryPropertyDefinitions.FTP_PASSWORD, "xd

o");
// set the remote directory that you want to send your docume

nt to
req.addProperty(DeliveryPropertyDefinitions.FTP_REMOTE_DIRECT

ORY, "pub");
// set the remote file name
req.addProperty(DeliveryPropertyDefinitions.FTP_REMOTE_FILENA

ME, "test.pdf");
// set the document
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

The following properties are supported. A String value is required unless otherwise
noted.

Delivery Manager 11-13

Property Description

FTP_HOST Required
Enter the server host name.

FTP_PORT Optional
Enter the server port number. Default is 21.

FTP_USERNAME Required
Enter the login user name to the FTP server.

FTP_PASSWORD Required
Enter the login password to the FTP server.

FTP_REMOTE_DIRECTORY Required
Enter the directory to which to deliver the
document (example: /pub/)

FTP_REMOTE_FILENAME Required
Enter the document file name for the remote
server.

FTP_BINARY_MODE Optional
Valid values are "true" (default) or "false".

Delivering Documents over Secure FTP
Secure FTP is the protocol based on the Secure Shell technology (ssh) and it is widely
used to transfer files in a secure manner. Both Secure Shell and Secure FTP are defined
by the Internet Engineering Task Force (IETF) and the specifications are available on their
Web site: http://www.ietf.org. The delivery system supports the delivery of documents
to secure FTP servers.

The following tables lists the supported properties. A string value is required for each
property unless otherwise noted.

11-14 Oracle XML Publisher User’s Guide

http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org
http://www.ietf.org

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_S

FTP);
// set hostname of the SFTP server
req.addProperty(DeliveryPropertyDefinitions.SFTP_HOST, "mysft

phost");
// set username and password to access server
req.addProperty(DeliveryPropertyDefinitions.SFTP_USERNAME, "m

yname");
req.addProperty(DeliveryPropertyDefinitions.SFTP_PASSWORD, "m

ypassword");
// set the remote directory that you want to send your docume

nt to
req.addProperty(DeliveryPropertyDefinitions.SFTP_REMOTE_DIREC

TORY, "pub");
// set the remote file name
req.addProperty(DeliveryPropertyDefinitions.SFTP_REMOTE_FILEN

AME, "test.pdf");
// set the document
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

Delivery Manager 11-15

Property Description

SFTP_HOST Required
Enter the target server host name.

SFTP_PORT Optional
Enter the target server SSH port number.
Default is 22.

SFTP_USERNAME Required
Enter the login user name.

SFTP_PASSWORD Required if you choose the SFTP_AUTH_TY
PE_PASSWORD authentication type.
Enter the login password.

SFTP_REMOTE_DIRECTORY Enter the directory to which to deliver the
document (example: /pub/). If no value is
entered, the document will be delivered to the
login directory.

SFTP_REMOTE_FILENAME Required
Enter the document file name on the remote
server.

SFTP_AUTH_TYPE Set either of the following:
SFTP_AUTH_TYPE_PASSWORD (Default)
Requires providing password at login.
SFTP_AUTH_TYPE_PUBLIC_KEY - public key
authorization type.

SFTP_PRIVATE_KEY_FILE Enter the client private key file. Required if you
choose SFTP_AUTH_TYPE_PUBLIC_KEY.

SFTP_PRIVATE_KEY_PASSWORD Enter the client private key password. Required
if you choose SFTP_AUTH_TYPE_PUBLIC_
KEY.

SFTP_FILE_PERMISSION Enter the permissions to set for the file being
created. Default is 0755.

Authentication Modes
The secure FTP delivery supports two authentication modes: password authentication
and public key authentication. Set the property SFTP_AUTH_TYPE to choose the
mode. The default mode is password authentication.

11-16 Oracle XML Publisher User’s Guide

:
:

// set public key auth type
req.addProperty(DeliveryPropertyDefinitions.SFTP_AUTH_TYPE,

DeliveryPropertyDefinitions.SFTP_AUTH_TYPE_P
UBLIC_KEY);

// set username
req.addProperty(DeliveryPropertyDefinitions.SFTP_USERNAME, "

myname");
// set the client’s private key file
req.addProperty(DeliveryPropertyDefinitions.SFTP_PRIVATE_KEY

_FILE ,
"/path/to/the/key");

// set the client’s private key password
req.addProperty(DeliveryPropertyDefinitions.SFTP_PRIVATE_KEY

_PASSWORD, "myPrivateKeyPass");
:
:

The password authentication mode requires the username and password to log in to the
secure FTP server. The following example shows sample code:

Example
:

:
// set password auth type
req.addProperty(DeliveryPropertyDefinitions.SFTP_AUTH_TYPE,

DeliveryPropertyDefinitions.SFTP_AUTH_TYPE_P
ASSWORD);

// set username and password to access server
req.addProperty(DeliveryPropertyDefinitions.SFTP_USERNAME, "

myname");
req.addProperty(DeliveryPropertyDefinitions.SFTP_PASSWORD, "

mypassword");
:
:

The public key authorization mode requires the username, your private key and
password for the private key. This is a more secure method than the password
authentication. Note that in order to use the public key authentication mode, you must
set up the public key in the ssh/secure FTP server in advance. The following example
shows sample code:

Delivery Manager 11-17

:
:

// set public key auth type
req.addProperty(DeliveryPropertyDefinitions.SFTP_AUTH_TYPE,

DeliveryPropertyDefinitions.SFTP_AUTH_TYPE_P
UBLIC_KEY);

// set username
req.addProperty(DeliveryPropertyDefinitions.SFTP_USERNAME, "

myname");
// set the client’s private key file
req.addProperty(DeliveryPropertyDefinitions.SFTP_PRIVATE_KEY

_FILE ,
"/path/to/the/key");

// set the client’s private key password
req.addProperty(DeliveryPropertyDefinitions.SFTP_PRIVATE_KEY

_PASSWORD, "myPrivateKeyPass");
:
:

Delivering Documents over HTTP
The Delivery Manager supports delivery of documents to HTTP servers. The following
sample sends a document through the HTTP POST method. Note that the receiving
HTTP server must be able to accept your custom HTTP request in advance (for example
via a custom servlet or CGI program).

11-18 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_H

TTP);

// set request method
req.addProperty(DeliveryPropertyDefinitions.HTTP_METHOD, Deli

veryPropertyDefinitions.HTTP_METHOD_POST);
// set document content type
req.addProperty(DeliveryPropertyDefinitions.HTTP_CONTENT_TYPE

, "application/pdf");
// set the HTTP server hostname
req.addProperty(DeliveryPropertyDefinitions.HTTP_HOST, "myhos

t");
// set the HTTP server port number
req.addProperty(DeliveryPropertyDefinitions.HTTP_PORT, "80");
// set the target remote directory
req.addProperty(DeliveryPropertyDefinitions.HTTP_REMOTE_DIREC

TORY, "/servlet/");
// set the remote filename (servlet class)
req.addProperty(DeliveryPropertyDefinitions.HTTP_REMOTE_FILEN

AME, "uploadDocument");

// set the document
req.setDocument("/document/test.pdf");

// submit the request
req.submit();
// close the request
req.close();

The following table lists the properties that are supported. A String value is required
for each property unless otherwise noted.

Property Description

HTTP_METHOD Optional
Sets the HTTP request method. Valid values are:
HTTP_METHOD_POST (Default)
HTTP_METHOD_PUT

HTTP_CONTENT_TYPE Optional
The document content type (example:
"application/pdf").

HTTP_HOST Required
Enter the server host name.

HTTP_PORT Optional
Enter the server port number. The default is 80.

HTTP_REMOTE_DIRECTORY Required
Enter the remote directory name (example: "/
home/").

Delivery Manager 11-19

Property Description

HTTP_REMOTE_FILENAME Required
Enter the file name to save the document as in
the remote directory.

HTTP_AUTHTYPE Optional
Valid values for authentication type are:
HTTP_AUTHTYPE_NONE - no authentication
(default)
HTTP_AUTHTYPE_BASIC - use basic HTTP
authentication
HTTP_AUTHTYPE_DIGEST - use digest HTTP
authentication

HTTP_USERNAME Optional
If the server requires authentication, enter the
username.

HTTP_PASSWORD Optional
If the server requires authentication, enter the
password for the username.

HTTP_ENCTYPE Optional
Enter the encryption type:
HTTP_ENCTYPE_NONE - no encryption
(default)
HTTP_ENCTYPE_SSL - use Secure Socket Layer

HTTP_USE_FULL_URL Optional
Set to "true" to send the full URL for the HTTP
request header. Valid values are "true" or "false"
(default).

HTTP_USE_CHUNKED_BODY Optional
Valid values are "true" (default) to use HTTP
chunked transfer coding for the message
body, or "false".

HTTP_TIMEOUT Optional
Enter a length of time in milliseconds after
which to terminate the request if a connection
is not made to the HTTP server. The default is
60000 (1 minute).

Delivering Documents via AS2
AS2 is one of the standard protocols defined in the Electronic Data Interchange-Internet
Integration (EDI-INT). AS2 is based on HTTP and other internet standard technologies
and is designed to exchange data over the internet in a secure manner. The AS2
specification is defined in RFC4130 (available at http://www.ietf.org/). The delivery
system supports the delivery of documents to AS2 servers. Sample code is as follows:

11-20 Oracle XML Publisher User’s Guide

http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/
http://www.ietf.org/

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_AS

2);

// set AS2 message properties
req.addProperty(DeliveryPropertyDefinitions.AS2_FROM, "Me");
req.addProperty(DeliveryPropertyDefinitions.AS2_TO, "You");
req.addProperty(DeliveryPropertyDefinitions.AS2_SUBJECT, "My E

DI Message");
req.addProperty(DeliveryPropertyDefinitions.AS2_CONTENT_TYPE,

"applications/EDIFACT");

// set HTTP properties
req.addProperty(DeliveryPropertyDefinitions.AS2_HTTP_HOST, "as

2hsot");
req.addProperty(DeliveryPropertyDefinitions.AS2_HTTP_REMOTE_DI

RECTORY, "/");
req.addProperty(DeliveryPropertyDefinitions.AS2_HTTP_REMOTE_FI

LENAME, "as2");

// set the document
req.setDocument("/document/myEDIdoc");
// submit the request
DeliveryResponse res = req.submit();
// close the request
req.close();

The following table lists the supported properties. A string value is required for each
property unless otherwise noted.

Property Description

AS2_FROM Required.
Enter the AS2 message sender.

AS2_TO Required.
Enter the AS2 message recipient.

AS2_SUBJECT Required.
Enter the message subject.

AS2_MESSAGE_COMPRESSION Default value is False. Enter True to compress
the message.

AS2_MESSAGE_SIGNATURE Default value is False. Enter True to sign the
message.

AS2_MESSAGE_ENCRYPTION Default value is False. Enter True to encrypt
the message.

Delivery Manager 11-21

Property Description

AS2_CONTENT_TYPE Required.
Enter the content type of the document. Valid
values are:

• application/EDIFACT

• application/xml

AS2_ENC_ALGO The AS2 encryption algorithm. Set one of the
following:

• AS2_ENC_ALGO_RC2_40

• AS2_ENC_ALGO_RC2_64

• AS2_ENC_ALGO_RC2_128

• AS2_ENC_ALGO_DES

• AS2_ENC_ALGO_DES_EDE3 (Defau

• AS2_ENC_ALGO_AES_128

• AS2_ENC_ALGO_AES_192

• AS2_ENC_ALGO_AES_256

AS2_DIGEST_ALGO Enter the AS2 digest algorithm for signing the
messages. Set either of the following:

• AS2_DIGEST_ALGO_MD5 (Default)

• AS2_DIGEST_ALGO_SHA1

AS2_ASYNC_ADDRESS Enter the asynchronous address to which MDN
notifications should be set.

AS2_ASYNC_EMAIL_SERVER_HOST Enter the email server host for asynchronous
email MDN.

AS2_ASYNC_EMAIL_SERVER_PORT Enter the email server port for asynchronous
email MDN.

AS2_ASYNC_EMAIL_SERVER_USERNAME Enter the email server USERNAME for
asynchronous email MDN.

AS2_ASYNC_EMAIL_SERVER_PASSWORD Enter the email server PASSWORD for
asynchronous email MDN.

AS2_ASYNC_EMAIL_SERVER_FOLDER_
NAME

Enter the IMAP folder name for aynchronous
email MDN.

AS2_HTTP_HOST Required.
Enter the server host name.

AS2_HTTP_PORT Enter the server HTTP port number. The
default is 80.

AS2_HTTP_REMOTE_DIRECTORY Required.
Enter the remote directory name. (Example: /
home/)

11-22 Oracle XML Publisher User’s Guide

Property Description

AS2_HTTP_REMOTE_FILENAME Required.
Enter the remote file name.

AS2_HTTP_AUTHTYPE Enter the HTTP authentication type. Valid
values are:

• AS2_HTTP_AUTHTYPE_NONE - no
authentication (Default)

• AS2_HTTP_AUTHTYPE_BASIC - Use
HTTP basic authentication.

• AS2_HTTP_AUTHTYPE_DIGEST - user
HTTP digest authentication.

AS2_HTTP_USERNAME Enter the username for HTTP authentication.

AS2_HTTP_PASSWORD Enter the password for HTTP authentication.

AS2_HTTP_ENCTYPE Set the encryption type. Valid values are:

• AS2_HTTP_ENCTYPE_NONE - no
encryption (default)

• AS2_HTTP_ENCTYPE_SSL - use secure
socket layer (SSL)

AS2_HTTP_TIMEOUT Enter the time out allowance in milliseconds.
Default is 60,000 (1 minute)

AS2_HTTP_PROXY_HOST Required.
Enter the proxy server host name.

AS2_HTTP_PROXY_PORT Enter the proxy server port number. Default
is 80.

AS2_HTTP_PROXY_AUTHTYPE • AS2_HTTP_AUTHTYPE_NONE - no
authentication (Default)

• AS2_HTTP_AUTHTYPE_BASIC - Use
HTTP basic authentication.

• AS2_HTTP_AUTHTYPE_DIGEST - user
HTTP digest authentication.

AS2_HTTP_PROXY_USERNAME Enter the username for proxy authentication.

AS2_HTTP_PROXY_PASSWORD Enter the password for HTTP proxy
authentication.

Synchrony
You can send either synchronous or asynchronous delivery requests to the AS2
servers. By default, the request is synchronous so that you can see the Message
Disposition Notification (MDN) immediately in the DeliveryResponse.

If you set the AS2_ASYNC_ADDRESS to your request, the request will be
asynchronous. You can specify either an HTTP URL or an email address where the
asynchronous MDN will be delivered to. Then, the AS2 server will deliver the MDN
directly to that address. Sample code for this is as follows:

Delivery Manager 11-23

Example
:

:
// Set the async address to receive MDN asynchronusly.
req.addProperty(DeliveryPropertyDefinitions.AS2_ASYNC_ADDRESS,

"async_target@acme.com");

// Set the email server information where the MDN will be deli
vered to.

req.addProperty(
DeliveryPropertyDefinitions.AS2_ASYNC_EMAIL_SERVER_HOST, "

mail.acme.com");
req.addProperty(

DeliveryPropertyDefinitions.AS2_ASYNC_EMAIL_SERVER_USERNAM
E, "async_target");

req.addProperty(
DeliveryPropertyDefinitions.AS2_ASYNC_EMAIL_SERVER_PASSWOR

D, "mypassword");

// set the document
req.setDocument("/document/myEDIdoc");
// submit the request with the DeliveryResponseListener
req.submit(myDeliveryListener);

:
:

The code above will check the email server periodically after sending the AS2 request
to the server. Once the MDN is delivered and found on the email server, the registered
DeliveryResponseListener will be called.

Direct and Buffering Modes
The delivery system supports two modes: Direct mode and Buffering mode. Buffering
Mode is the default.

Direct Mode
Direct Mode offers full, streamlined delivery processing. Documents are delivered to the
connection streams that are directly connected to the destinations. This mode is fast, and
uses less memory and disk space. It is recommended for online interactive processing.

To set the direct mode, set the BUFFERING_MODE property to "false". Following is a
code sample:

11-24 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();

// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_I

PP_PRINTER);

// set the direct mode
req.addProperty(DeliveryPropertyDefinitions.BUFFERING_MODE, "

false");
:
:
:

This mode does not offer document redelivery. For redelivery requirements, use the
buffering mode.

Buffering Mode
The buffering mode allows you to redeliver documents as many times as you want. The
delivery system uses temporary files to buffer documents, if you specify a temporary
directory (ds-temp-dir) in the delivery server configuration file. If you do not specify
a temporary directory, the delivery system uses the temporary memory buffer. It is
recommended that you define a temporary directory. For more information about the
configuration file, see Configuration File Support, page 11-34.

You can explicitly clear the temporary file or buffer by calling DeliveryRequest.
close() after finishing your delivery request.

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();

// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_I

PP_PRINTER);

// set buffering mode
req.addProperty(DeliveryPropertyDefinitions.BUFFERING_MODE, "

true");
req.addProperty(DeliveryPropertyDefinitions.TEMP_DIR, "/tmp")

;
:
:
:

// submit request
req.submit();

:
:

// submit request again
req.submit();

:
:

// close the request
req.close();

Delivery Manager 11-25

Monitoring Delivery Status
The delivery system allows you to check the latest delivery status of your request by
calling the getStatus()method. You can check the status of the request anytime, but
currently you must retain the delivery request object. Status definitions are defined in
the DeliveryRequest interface.

Monitoring delivery status is not available for the SMTP and HTTP delivery channels.

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();

// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_I

PP_PRINTER);
:
:

// submit request
req.submit();

:
:

// get request status
int status = req.getStatus();
if (status == DeliveryRequest.STATUS_SUCCESSFUL)
{

System.out.println("Request has been delivered successfull
y.");

}
:
:

// get request status again...
status = req.getStatus();

:
:

Global Properties
You can define the global properties to the DeliveryManager so that all the delivery
requests inherit the global properties automatically.

The following global properties are supported:

Property Description

BUFFERING_MODE Valid values are "true" (default) and "false". See
Direct and Buffering Modes, page 11-24 for
more information.

TEMP_DIR Define the location of the temporary directory.

CA_CERT_FILE Define the location of the CA Certificate file
generated by Oracle Wallet Manager. This
is used for SSL connection with the Oracle
SSL library. If not specified, the default CA
Certificates are used.

11-26 Oracle XML Publisher User’s Guide

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();

// set global properties
dm.addProperty(DeliveryPropertyDefinitions.TEMP_DIR, "/tmp");
dm.addProperty(DeliveryPropertyDefinitions.BUFFERING_MODE, "t

rue");

// create delivery requests
DeliveryRequest req1 = dm.createRequest(DeliveryManager.TYPE_

IPP_PRINTER);
DeliveryRequest req2 = dm.createRequest(DeliveryManager.TYPE_

IPP_FAX);
DeliveryRequest req3 = dm.createRequest(DeliveryManager.TYPE_

SMTP_EMAIL);
:
:

Delivering Multiple Requests with a Single Output Stream
To deliver your document to multiple delivery channels with a single output stream, use
the MultipleRequestHandler utility. Register all your delivery requests to the utility to
get a single output stream that internally distributes the data to the requests.

Delivery Manager 11-27

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
:
:

// create delivery requests
DeliveryRequest req1 = dm.createRequest(DeliveryManager.TYPE_

IPP_PRINTER);
DeliveryRequest req2 = dm.createRequest(DeliveryManager.TYPE_

IPP_FAX);
DeliveryRequest req3 = dm.createRequest(DeliveryManager.TYPE_

SMTP_EMAIL);
:
:

// create MultipleRequestHandler instance
MultipleRequestHandler mh = new MultipleRequestHandler();
// register delivery requests
mh.addRequest(req1);
mh.addRequest(req2);
mh.addRequest(req3);
// get the ouptput stream
OutputStream out = mh.getDocumentOutputStream();

:
:

// write the document
out.write(yourDocument);

:
:

// submit all delivery requests
mh.submitRequests();

:
:

// close requests
req1.close();
req2.close();
req3.close();

Adding a Custom Delivery Channel
You can add custom delivery channels to the system by following the steps below:

1. Define the delivery properties

2. Implement the DeliveryRequest interface

3. Implement the DeliveryRequestHandler interface

4. Implement the DeliveryRequestFactory interface

5. Register your custom DeliveryRequestFactory to the DeliveryManager

The following sections detail how to create a custom delivery channel by creating a
sample called "File delivery channel" that delivers documents to the local file system.

Dene Delivery Properties
The first step to adding a custom delivery channel is to define the properties. These will
vary depending on what you want your channel to do. You can define constants for your

11-28 Oracle XML Publisher User’s Guide

properties. Our example, a file delivery channel requires only one property, which
is the destination.

Sample code is:

Example
package oracle.apps.xdo.delivery.file;

public interface FilePropertyDefinitions
{

/** Destination property definition. */
public static final String FILE_DESTINATION = "FILE_DESTINATI

ON:String";

}
The value of each constant can be anything, as long as it is a String. It is recommend that
you define the value in [property name]:[property value type]format so
that the delivery system automatically validates the property value at runtime. In the
example, the FILE_DESTINATION property is defined to have a String value.

Implement DeliveryRequest Interface
DeliveryRequest represents a delivery request that includes document
information and delivery metadata, such as destination and other properties. To
implement oracle.apps.xdo.delvery.DeliveryRequest you can extend the class
oracle.apps.xdo.delivery.AbstractDeliveryRequest.

For example, to create a custom delivery channel to deliver documents to the local file
system, the DeliveryRequest implementation will be as follows:

package oracle.apps.xdo.delivery.file;
import oracle.apps.xdo.delivery.AbstractDeliveryRequest;

public class FileDeliveryRequest extends AbstractDeliveryRequest
implements FilePropertyDefinitions
{
private static final String[] MANDATORY_PROPS = {FILE_DESTINATIO

N};

/**
* Returns mandatory property names
*/
public String[] getMandatoryProperties()
{
return MANDATORY_PROPS;

}
/**
* Returns optional property names
*/
public String[] getOptionalProperties()
{
return null;

}
}

Delivery Manager 11-29

Implement DeliveryRequestHandler Interface
DeliveryRequestHandler includes the logic for handling the delivery requests. A sample
implementation of oracle.apps.xdo.delivery.DeliveryRequestHandler for the file delivery
channel is as follows:

Example
package oracle.apps.xdo.delivery.file;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;

import oracle.apps.xdo.delivery.DeliveryException;
import oracle.apps.xdo.delivery.DeliveryRequest;
import oracle.apps.xdo.delivery.DeliveryRequestHandler;
import oracle.apps.xdo.delivery.DeliveryStatusDefinitions;

public class FileDeliveryRequestHandler implements DeliveryRequest
Handler
{

private FileDeliveryRequest mRequest;
private boolean mIsOpen = false;
private OutputStream mOut;

/**
* default constructor.
*/
public FileDeliveryRequestHandler()
{
}

/**
* sets the request.
*/
public void setRequest(DeliveryRequest pRequest)
{
mRequest = (FileDeliveryRequest) pRequest;

}

/**
* returns the request.
*/
public DeliveryRequest getRequest()
{
return mRequest;

}

/**
* opens the output stream to the destination.
*/
public OutputStream openRequest() throws DeliveryException
{
try
{
String filename =
(String) mRequest.getProperty(FileDeliveryRequest.FILE_DES

11-30 Oracle XML Publisher User’s Guide

TINATION);
mOut = new BufferedOutputStream(new FileOutputStream(filenam

e));

mIsOpen = true;
// set request status to open
mRequest.setStatus(DeliveryStatusDefinitions.STATUS_OPEN);
return mOut;

}
catch (IOException e)
{
closeRequest();
throw new DeliveryException(e);

}

}

/**
* flushes and closes the output stream to submit the request.
*/
public void submitRequest() throws DeliveryException
{
try
{
// flush and close
mOut.flush();
mOut.close();
// set request status
mRequest.setStatus(DeliveryStatusDefinitions.STATUS_SUCCESSF

UL);
mIsOpen = false;

}
catch (IOException e)
{
closeRequest();
throw new DeliveryException(e);

}
}

/**
* checks the delivery status.
*/
public void updateRequestStatus() throws DeliveryException
{

// check if the file is successfully delivered
String filename =
(String) mRequest.getProperty(FileDeliveryRequest.FILE_DESTI

NATION);
File f = new File(filename);

// set request status
if (f.exists())
mRequest.setStatus(DeliveryStatusDefinitions.STATUS_SUCCESSF

UL);
else
mRequest.setStatus(DeliveryStatusDefinitions.STATUS_FAILED_I

Delivery Manager 11-31

O_ERROR);

}
/**
* returns the request status.
*/
public boolean isRequestOpen()
{
return mIsOpen;

}

/**
* closes the request, frees all resources.
*/
public void closeRequest()
{
mIsOpen = false;
try
{
if (mOut != null)
{
mOut.flush();
mOut.close();

}
}
catch (IOException e)
{
}
finally
{
mOut = null;

}
}

}

Implement DeliveryRequestFactory Interface
Implement the DeliveryRequestFactory interface to register your custom delivery
channel to the delivery system.

A sample implementation of oracle.apps.xdo.delivery.DeliveryRequestFactory is as
follows:

11-32 Oracle XML Publisher User’s Guide

Example
package oracle.apps.xdo.delivery.file;

import oracle.apps.xdo.delivery.DeliveryRequest;
import oracle.apps.xdo.delivery.DeliveryRequestFactory;
import oracle.apps.xdo.delivery.DeliveryRequestHandler;

public class FileDeliveryRequestFactory
implements DeliveryRequestFactory
{
/**
* default constructor.
*/
public FileDeliveryRequestFactory()
{
}
/**
* returns delivery request.
*/
public DeliveryRequest createRequest()
{
return new FileDeliveryRequest();

}
/**
* returns delivery request handler.
*/
public DeliveryRequestHandler createRequestHandler()
{
return new FileDeliveryRequestHandler();

}
/**
* returns this
*/
public DeliveryRequestFactory getFactory()
{
return this;

}
}

Register your custom DeliveryRequestFactory to DeliveryManager
The final step is to register your custom delivery channel to the delivery system. You can
register your delivery channel in two ways:

• Static method

Use this method to register your delivery channel to the whole delivery system by
specifying it in the configuration file. See Configuration File Support, page 11-34
for more information.

• Dynamic method

Register the delivery channel to the Java VM instance by calling the Register API
programmatically.

Sample code to register the file delivery channel using the dynamic method and call
the file delivery channel is as follows:

Delivery Manager 11-33

Example
package oracle.apps.xdo.delivery.file;

import oracle.apps.xdo.delivery.DeliveryManager;
import oracle.apps.xdo.delivery.DeliveryRequest;

public class FileDeliverySample
{
public static void main(String[] args) throws Exception
{
// register the file delivery channel
DeliveryManager.addRequestFactory("file", "oracle.apps.xdo.del

ivery.file.FileDeliveryRequestFactory");

// create delivery manager instance
DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest("file");

// set the destination
req.addProperty(
FileDeliveryRequest.FILE_DESTINATION,
"d:/Temp/testDocument_delivered.pdf");

// set the document to deliver
req.setDocument("D:/Temp/testDocument.pdf");

// submit the request
req.submit();
// close the request
req.close();

}
}

Conguration File Support
The delivery systems supports a configuration file to set default servers, default
properties, and custom delivery channels. The location of the configuration file is

{XDO_TOP}/resource/xdodelivery.cfg

where {XDO_TOP} is a Java system property that points to the physical directory.

This system property can be set in two ways:

• Pass -DXDO_TOP=/path/to/xdotop to the Java startup parameter

• Use a Java API in your code, such as java.lang.System.getProperties().
put("XDO_TOP", "/path/to/xdotop")

The system property must be defined before constructing a DeliveryManager object.

Following is a sample configuration file:

Example
<?xml version=’1.0’ encoding=’UTF-8’?>
<config xmlns="http://xmlns.oracle.com/oxp/delivery/config">
<! - ==

- >
<! - servers section

- >

11-34 Oracle XML Publisher User’s Guide

<! - List your pre-defined servers here.
- >

<! - ==
- >
<servers>
<server name="myprinter1" type="ipp_printer" default="true">
<uri>ipp://myprinter1.oracle.com:631/printers/myprinter1</u

ri>

</server>
<server name="myprinter2" type="ipp_printer" >
<host>myprinter2.oracle.com</host>
<port>631</port>

<uri>ipp://myprinter2.oracle.com:631/printers/myprinter2</u
ri>

<authType>basic</authType>
<username>xdo</username>
<password>xdo</password>

</server>
<server name="myfax1" type="ipp_fax" default="true" >
<host>myfax1.oracle.com</host>

<port>631</port>
<uri>ipp://myfax1.oracle.com:631/printers/myfax1</uri>

</server>
<server name="mysmtp1" type="smtp_email" default="true">

<host>myprinter1.oracle.com</host>
<port>25</port>

</server>
<server name="mysmtp2" type="smtp_email" >

<host>mysmtp12.oracle.com</host>
<port>25</port>
<username>xdo</username>
<password>xdo</password>

</server>
</servers>
<! - ==

- >
<! - properties section

- >
<! - List the system properties here.

- >
<! - ==

- >
<properties>

<property name="ds-temp-dir">/tmp</property>
<property name="ds-buffering">true</property>

</properties>
<! - ==

- >
<! - channels section

Delivery Manager 11-35

- >

<! - List the custom delivery channels here.
- >
<! - ==

- >
<channels>
<channel name="file">oracle.apps.xdo.delivery.file.FileDelive

ryRequestFactory</channel>
</channels>

</config>

Dening Multiple Servers for a Delivery Channel
You can define multiple server entries for each delivery channel. For example, the
preceding sample configuration file has two server entries for the "ipp_printer" delivery
channel ("myprinter1" and "myprinter2").

Load a server entry for a delivery request by calling DeliveryRequest.setServer()
method. Following is an example:

Example
// create delivery manager instance

DeliveryManager dm = new DeliveryManager();
// create a delivery request
DeliveryRequest req = dm.createRequest(DeliveryManager.TYPE_I

PP_PRINTER);

// load myprinter1 setting
req.setServer("myprinter1");

Specifying a Default Server for a Delivery Channel
To define a default server for a delivery channel, specify default="true". In the
configuration file example above, "myprinter1" is defined as the default sever for the
"ipp_printer" delivery channel. If a user does not specify the server properties for
"ipp_printer" delivery, the server properties under the default server will be used.

Setting Up CUPS
The delivery manager requires CUPS to print and fax documents. This section describes
how to set up CUPS for printing and faxing on RedHat Linux.

The following diagram shows the integration between XML Publisher and CUPS:

11-36 Oracle XML Publisher User’s Guide

The following procedures describe how to add a printer or fax to CUPS and how to
test your setup. For more information, see the CUPS Software Administrators Manual
(http://www.cups.org/doc-1.1/sam.html) and the Redhat Advanced Server online help.

Prerequisites
• RedHat Advanced Server 3.0

• Fax Modem connected to the Linux box

• Development Tools for the RedHat Advanced Server installed

• CUPS (Installed by default when installing RedHat AS 3.0)

Setting Up a Printer on CUPS
The RedHat Advanced Server provides a configuration wizard to help you set up your
printers. The RedHat process is summarized below:

Using the RedHat Printer Conguration Wizard:
1. Run "redhat-config-printer"

While logged on as the root user, open a terminal and execute "redhat-config-
printer". This invokes the Printer configuration window.

2. Select the New tab to launch the Add a new print queue wizard.

3. Follow the wizard prompts to:

• Enter a queue name.

• Select the queue type.

Select "Networked_JetDirect" to set up a network printer. For this selection, you
must also enter the following:

• Printer - enter a hostname or IP address.

• Port - enter a port.

Delivery Manager 11-37

http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html
http://www.cups.org/doc-1.1/sam.html

If the printer driver is installed in Microsoft Windows, the Printer and Port
information is available from the Properties dialog for the printer (Settings >
Printers and Faxes > (select printer) > File > Properties).

• Select the printer model.

If your printer supports PostScript, select the following:

• Manufacturer: "Generic"

• Model: "PostScript Printer"

• Review your selections and select "Apply" to create your new print queue.

4. Your new queue now displays in the Printer configuration window.

Test Your Printer on CUPS:
1. Launch a browser on RedHat and enter the following URL:

http://localhost:631

2. Select the Printers tab. The printer you just created will be listed.

To use your Windows browser to access this page, see Making CUPS Accessible
from Other Machines, page 11-40.

3. Select Print Test Page to test your printer setup. If the test page does not print, repeat
the configuration steps. Ensure that your printer type and model selections are
correct.

Installing and Setting Up Fax for CUPS
This section describes how to install efax-0.9 software and configure it for CUPS.

Install the Fax Software:
1. Download efax-0.9 from one of the following locations:

• http://www.cce.com/efax/download/

• ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz

2. Extract the files to a working directory using the following commands:

• gunzip efax-0.9.tar.gz

• tar xvf efax-0.9.tar

3. Compile and install using the following commands (refer to the Readme for more
information):

• make

• make install

Note: You must have make and gcc installed in your RedHat AS.

4. Test the fax.

Enter the following command:

fax send <fax_number><tiff file>

For example:

11-38 Oracle XML Publisher User’s Guide

http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
http://www.cce.com/efax/download/
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz
file://ftp://ftp.metalab.unc.edu/pub/Linux/apps/serialcomm/fax/efax-0.9.tar.gz

fax send 1234567 test.tiff

The fax is successful if you get the return code:

done, returning 0 (success)

5. Download fax4CUPs. It is available from the following site:

• http://www.gnu.org/directory/productivity/special/fax4CUPS.html

6. Install fax4CUPS as follows:

• Extract the tar file to a temporary directory

• Change the directory: cd fax4CUPS-1.23

• Open the INSTALL file and follow all steps.

7. Restart CUPS using the following command:

/etc/rc.d/init.d/cups restart

Setting Up a Fax on CUPS:
1. Launch a browser and go to the following URL: http://localhost:631/admin

2. Enter the admin username and password in the dialog that launches.

3. From the Admin page, select Add Printer.

4. Add a Fax queue as follows:

In the Add New Printer region, enter the following fields:

• Name - enter a meaningful name for the, such as "efaxserver". This will be
referred to as "ipp://serverName:631/printers/efaxserver".

• Location - optional.

• Description - optional.

5. Select a device for the fax queue.

Select "Faxmodem (efax on /dev/modem)". In some cases, "/dev/ttySxx" will be
shown instead.

6. Select a model for the fax queue.

Select "efax". You can also select either "HylaFAX" or "mgetty-fax" if these have
been installed.

7. Select the driver for the fax queue.

Select "efax (en)".

8. Verify that the new fax queue appears on the CUPS Admin Web page.

9. Text the fax on CUPS.

Enter the following command to test the fax:

/usr/bin/lp -d <printer name> -t <phone#> test.pdf
Example:

/usr/bin/lp -d efax1 -t 5556231 myfax.pdf

Delivery Manager 11-39

http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html
http://www.gnu.org/directory/productivity/special/fax4CUPS.html

Making CUPS Accessible from Other Machines
By default, CUPS does not allow access from other network machines. However, it can
be configured to allow access, as follows:

1. Open a CUPS configuration file using the following command:

Open /etc/cups/cupsd.conf

2. Add a "Listen" instruction.

• Scroll to the bottom of the configuration file where the other Listen instructions
are declared.

• Copy "Listen 127.0.0.1:631" and paste it above or below the original.

• Replace "127.0.0.1" with the Linux server’s IP address.

3. Configure each printer.

• In the configuration file, locate:

<Location /printers/your_printer_queue>

• Comment the instruction "Deny From All".

Example:

Deny From All

• Change "Allow from 127.0.0.1" to "Allow from All"

• Repeat for all printer or fax queues that you wan to make accessible.

4. Save the configuration file and restart CUPS.

• Use the following command to stop CUPS:

/etc/rc.d/init.d/cups stop

• Use the following command to start CUPS:

/etc/rc.d/init.d/cups start

5. Test the accessibility from other machines.

Launch a browser from another machine and enter one of the following URLs to
ensure that the CUPS web page can be accessed:

• http://linux_server_name:631

• http://linux_ip_address:631

11-40 Oracle XML Publisher User’s Guide

12
Integrating the Document Viewer into an

Application

This chapter covers the following topics:

• Overview

• Parameters

• Implementing the Document Viewer in an Application Page

• Document Viewer Common Region APIs

Overview
The XML Publisher common user interface document viewer, or common region, is an
Oracle Applications Framework (OAF) shared region. The document viewer can be run
as a standalone page, or it can be integrated within an application flow. The document
viewer accepts a set of parameters and renders the output inline, or exports it.

For information on developing applications in Oracle Applications Framework, see the
Oracle Applications Framework Developer’s Guide, OracleMetaLink note 269138.1. Specific
information about component reuse can be found in Chapter 2: OA Framework
Essentials.

Parameters
The viewer region is called with a set of parameters. The values of these parameters will
determine how the region will be rendered.

Integrating the Document Viewer into an Application 12-1

Parameter Description

p_DataSource (Required) The following XML data source types are supported:

• DATA_SOURCE_TYPE_REQUEST_ID: concurrent program request ID

• DATA_SOURCE_TYPE_FILE - XML data file

• DATA_SOURCE_TYPE_BLOB - BlobDomain

• DATA_SOURCE_TYPE_DOCUMENT - Final document for preview

These types are defined in the xdo.oa.common.DocumentHelper class.
Additonal parameters may be required depending on the type of data
source. These parameters are described in the next section.

p_TemplateCode (Optional) If set to null, the UI will provide a list from which to select a template
from the available templates based on the p_DataSourceCode parameter. To
specify the template to use for this region, enter the Template Code. The template
must reside in the Template Manager. Example: AR_CustomerListing

p_TemplateAppsShortName Required if p_TemplateCode is not null. Enter the Application short
name of the application to which the template is assigned in the Template
Manager. Example: AR

p_Locale (Optional) If null, the UI will provide a list to select available locales for the selected
template. The value "Default" can be entered to select the default template locale.

p_OutputType (Optional) If null, the UI will provide a list to select available output types
for the selected template. Valid output types are: RTF, PDF, EXCEL, and
HTML, depending on the template type.

p_XDORegionHeight Height of the XDO common region window expressed as a percentage. Example:
60%

Data Source Dependent Parameters
The following parameters are required when the parameter p_DataSource is
DocumentHelper.DATA_SOURCE_TYPE_REQUEST_ID. Using this mode the viewer
will render a concurrent request output.

Parameter Description

p_RequestId Enter the concurrent request ID.

The following parameters are required when the parameter p_DataSource is
DocumentHelper.DATA_SOURCE_TYPE_FILE.

Parameter Description

p_DataSourceCode Enter the DataSourceCode from the Template Manager repository. Example: AR_
CUSTOM_LISTING

p_DataSourceAppsShortName Enter the Application Short name for the data source definition. Example: AR

p_AbsolutePath Enter the absolute path for the XML data file.

The following parameters are required when the parameter p_DataSource is
DocumentHelper.DATA_SOURCE_TYPE_BLOB.

12-2 Oracle XML Publisher User’s Guide

Parameter Description

p_DataSourceCode Enter the DataSourceCode from the Template Manager repository. Example: AR_
CUSTOM_LISTING

p_DataSourceAppsShortName Enter the Application Short name for the data source definition. Example: AR

XML_DATA_FILE Enter the BLOBDomain that contains the XML data file.

The following parameters are required when the parameter p_DataSource is
DocumentHelper.DATA_SOURCE_TYPE_DOCUMENT.

Parameter Description

p_AbsolutePath Enter the absolute path for the document file.

p_DocumentType Enter the document type to determine the correct content type. Valid values
are: PDF, RTF, EXCEL, HTML.

Implementing the Document Viewer in an Application Page
This section describes the implementation of the common region document viewer
within the OA framework application.

Providing Template, Locale, and Format Options
The following figure shows a copy of the Customer Listing Report. The
page has two regions: the top is the parameter region, which accepts a set of
parameters and the bottom is the output region. The lower region extends the
oracle.apps.xdo.oa.common.DocumentViewerRn.xml to render the report output.

Integrating the Document Viewer into an Application 12-3

Use the Export button to export the output to XML Publisher’s supported formats
(EXCEL, HTML, PDF, RTF).

Following is the Controller code for the Customer Listing shown in the figure:

public void processRequest(OAPageContext pageContext, OAWebBean w
ebBean)
{
super.processRequest(pageContext, webBean);
pageContext.putParameter("p_DataSource",DocumentHelper.DATA_SOU

RCE_TYPE_BLOB);
pageContext.putParameter("p_DataSourceCode","CUST_LISTING");
pageContext.putParameter("p_DataSourceAppsShortName","XDO");
pageContext.putParameter("p_XDORegionHeight","55%");
}

public void processFormRequest(OAPageContext pageContext, OAWebBe
an webBean)
{
super.processFormRequest(pageContext, webBean);

OAApplicationModule am = pageContext.getApplicationModule(webB
ean);

if (pageContext.getParameter("Go") != null)
{
String customerNameLow = pageContext.getParameter("CustomerNa

meLow");
String customerNameHigh = pageContext.getParameter("CustomerN

ameHigh");
String customerNoLow = pageContext.getParameter("CustomerNoLo

w");
String customerNoHigh = pageContext.getParameter("CustomerNoH

igh");
String orderBy = pageContext.getParameter("OrderBy");

Serializable[] tcParameter = {customerNameLow,
customerNameHigh,
customerNoLow,
customerNoHigh,
orderBy};

BlobDomain result = (BlobDomain) am.invokeMethod("getXMLData",
tcParameter);

pageContext.putSessionValueDirect("XML_DATA_BLOB", result);

}

Using a Fixed Template and Locale Option
In this implementation the region is rendered with a fixed template: "Customer_Listing"
and the "Default" locale. Only the Format list is then rendered for the region.

The Controller code for this option is as follows:

12-4 Oracle XML Publisher User’s Guide

public void processRequest(OAPageContext pageContext, OAWebBean w
ebBean)
{
super.processRequest(pageContext, webBean);

pageContext.putParameter("p_DataSource",DocumentHelper.DATA_SOURCE
_TYPE_BLOB);

pageContext.putParameter("p_DataSourceCode","CUST_LISTING");
pageContext.putParameter("p_DataSourceAppsShortName","XDO");
pageContext.putParameter("p_XDORegionHeight","55%");
pageContext.putParameter("p_TemplateCode","Customer_Listing");
pageContext.putParameter("p_TemplateAppsShortName","XDO");
pageContext.putParameter("p_Locale","Default");

}

Document Viewer Common Region APIs
The XML Publisher common regions are based on the oracle.apps.xdo.oa.common.
DocumentHelper.java API, which has a set of public methods to render and export the
document. DocumentHelper.java can also be used outside of the XDO common region.

Following are descriptions of methods to perform the following functions:

• Return the output URL

• Export the document

DocumentHelper.GetOutputURL
This method returns the URL, which can then be attached to OAHTML bean to render
the document output:

public static String getOutputURL(

OAPageContext pageContext,
String appShortName,
String templateCode,
InputStream inputStream,
String outputType,
Properties properties,
String language,
String territory)

A sample implementation of this method is as follows:

Integrating the Document Viewer into an Application 12-5

String redirectURL = DocumentHelper.getOutputURL(pageContext,
appShortName,
templateCode,
dataInputStream,
outputType,
properties,
language,
territory);

OAHTMLWebBean outRegion = (OAHTMLWebBean)createWebBean(pageConte
xt, HTML_WEB_BEAN, null, "IFRAME");
outRegion.setHTMLAttributeValue("src",redirectURL);

outRegion.setHTMLAttributeValue("width", "100%");
outRegion.setHTMLAttributeValue("height"", "60%");
outRegion.setHTMLAttributeValue("title ",templateCode);
outRegion.setHTMLAttributeValue("name ",templateCode);
pageContext.getPageLayoutBean().addIndexedChild(outRegion)

;

DocumentHelper.exportDocument
This method can be called from any event, such as the submit button to export the
document.

public static void exportDocument(

OAPageContext pageContext,
String appShortName,
String templateCode,
String language,
String territory,
InputStream inputStream,
String outputType,
Properties properties)

12-6 Oracle XML Publisher User’s Guide

A
XML Publisher Conguration File

XML Publisher Conguration File
Properties set in the Administration interface (see Administration, page 8-1) can also
be set using a configuration file. The configuration file is optional. There is no default
configuration file in the system.

If you defined properties in the Administration interface and have defined the same
properties in a configuration file, the properties defined in the Administration interface
will take precedence.

Important: It is strongly recommended that you set up a temporary
directory for processing large files. If you do not, you will encounter
"Out of Memory" errors when processing large files. Create a temporary
directory using the Administration interface or by defining the
system-temp-dir property (described below).

It is also recommended that you secure the configuration file if you use
it to set the PDF security passwords.

When You Must Set a Conguration File
The Administration interface supports the setting of properties at the site level, the data
definition level, and the template level. If you have XML Publisher installed on multiple
middle tier machines and you want to set a property at the server level, you must use a
configuration file.

File Name and Location
You must name this file xdo.cfg and place it under <XDO_TOP>/resource.

Alternatively, you can place the configuration file under <JRE_TOP>/jre/lib.

Note: <JRE_TOP> refers to AF_JRE_TOP for the concurrent node or
OA_JRE_TOP for the Web node.

Namespace
The namespace for this configuration file is:

http://xmlns.oracle.com/oxp/config/

Conguration File Example
Following is a sample configuration file:

XML Publisher Conguration File A-1

<config version="1.0.0" xmlns="http://xmlns.oracle.com/oxp/confi
g/">

<!-- Properties -->
<properties>

<!-- System level properties -->
<property name="system-temp-dir">/tmp</property>

<!-- PDF compression -->
<property name="pdf-compression">true</property>

<!-- PDF Security -->
<property name="pdf-security">true</property>
<property name="pdf-open-password">user</property>
<property name="pdf-permissions-password">owner</property>
<property name="pdf-no-printing">true</property>
<property name="pdf-no-changing-the-document">true</property

>
</properties>

<!-- Font setting -->
<fonts>

<!-- Font setting (for FO to PDF etc...) -->

<truetype path="/fonts/Arial.ttf" />

<truetype path="/fonts/ALBANWTJ.ttf" />

<!--Font substitute setting (for PDFForm filling etc...) -->
<font-substitute name="MSGothic">

<truetype path="/fonts/msgothic.ttc" ttcno="0" />
</font-substitute>

</fonts>
</config>

How to Read the Element Specications
The following is an example of an element specification:

<Element Name Attribute1="value"
Attribute2="value"

AttributeN="value"
<Subelement Name1/>[occurrence-spec]
<Subelement Name2>...</Subelement Name2>
<Subelement NameN>...</Subelement NameN>

</Element Name>
The [occurrence-spec] describes the cardinality of the element, and corresponds
to the following set of patterns:

• [0..1] - indicates the element is optional, and may occur only once.

• [0..n] - indicates the element is optional, and may occur multiple times.

Structure
The <config> element is the root element. It has the following structure:

A-2 Oracle XML Publisher User’s Guide

<config version="cdata" xmlns="http://xmlns.oracle.com/oxp/config
/">

<fonts> ... </fonts> [0..n]
<properties> ... </properties> [0..n]

</config>

Attributes
version
The version number of the configuration file format. Specify 1.0.0.

xmlns
The namespace for XML Publisher’s configuration file. Must be http://xmlns.
oracle.com/oxp/config/

Description
The root element of the configuration file. The configuration file consists of two parts:

• Properties (<properties> elements)

• Font definitions (<fonts> elements)

The <fonts> and <properties> elements can appear multiple times. If conflicting
definitions are set up, the last occurrence prevails.

Properties
This section describes the <properties> element and the <property> element.

The <properties> element
The properties element is structured as follows:

<properties locales="cdata">
<property>...
</property> [0..n]

</properties>

Description
The <properties> element defines a set of properties. You can specify the locales
attribute to define locale-specific properties. Following is an example:

Example
<!-- Properties for all locales -->
<properties>
...Property definitions here...
</properties>

<!--Korean specific properties-->
<properties locales="ko-KR">
...Korean-specific property definitions here...
</properties>

The <property> element
The <property> element has the following structure:

<property name="cdata">
...pcdata...

</property>

XML Publisher Conguration File A-3

Attributes
name
Specify the property name.

Description
Property is a name-value pair. Specify the property name (key) to the name attribute and
the value to the element value.

Example
<properties>
<property name="system-temp-dir">d:\tmp</property>
<property name="system-cache-page-size">50</property>
<property name="pdf-replace-smart-quotes">false</property>

</properties>

List of Available Properties
See Configuration, page 8-2 in the Administration chapter for the list of properties. Use
the internal name of the property when specifying it in the configuration file. For
example, the PDF Output Properties section lists the following:

Property Name Internal Name Default Value Description

Compress PDF output pdf-compression True Specify "True" or "False" to
control compression of the
output PDF file.

To specify this property in the configuration file, enter the following:

<properties>
<property name="pdf-compression">false</property>

</properties>

Font Denitions
Font definitions include the following elements:

• <fonts>

•

• <font-substitute>

• <truetype>

• <type1>

For the list of Truetype and Type1 fonts, see Predefined Fonts, page 8-13.

<fonts> element
The <fonts> element is structured as follows:

<fonts locales="cdata">
 ... [0..n]
<font-substitute> ... </font-substitute> [0..n]

</fonts>

A-4 Oracle XML Publisher User’s Guide

Attributes
locales
Specify the locales for this font definition. This attribute is optional.

Description
The <fonts> element defines a set of fonts. Specify the locales attribute to define
locale-specific fonts.

Example
<!-- Font definitions for all locales -->
<fonts>
..Font definitions here...

</fonts>

<!-- Korean-specific font definitions -->
<fonts locales="ko-KR">
... Korean Font definitions here...
</fonts>

 element
Following is the structure of the element:

<font family="cdata" style="normalitalic"
weight="normalbold">

<truetype>...</truetype>
or <type1> ... <type1>

Attributes
family
Specify any family name for this font. If you specify "Default" to this attribute, you can
define a default fallback font. family is case-insensitive.

style
Specify "normal" or "italic" for the font style.

weight
Specify "normal" or "bold" for the font weight.

Description
Defines an XML Publisher font. This element it primarily used to define font for
FO-to-PDF processing. The PDF Form Processor does not refer to this element.

Example
<!-- Define "Arial" font -->

<truetype path="/fonts/Arial.ttf"/>

<font-substitute> element
Following is the structure of the font-substitute element:

<font-substitute name="cdata">
<truetype>...</truetype>

or <type1>...</type1>
</font-substitute>

XML Publisher Conguration File A-5

Attributes
name
Specify the name of the font to be substituted.

Description
Defines a font substitution. This element is used to define fonts for the PDF Form
Processor.

Example
<font-substitute name="MSGothic">

<truetype path="/fonts/msgothic.ttc" ttccno=0"/>
</font-substitute>

<type1> element>
The form of the <type1> element is as follows:

<type1 name="cdata"/>

Attributes
name
Specify one of the Adobe standard Latin1 fonts, such as "Courier".

Description
<type1> element defines an Adobe Type1 font.

Example
<!--Define "Helvetica" font as "Serif" -->

<type1 name="Helvetica"/>

A-6 Oracle XML Publisher User’s Guide

B
Supported XSL-FO Elements

Supported XSL-FO Elements
The following table lists the XSL-FO elements supported in this release of XML
Publisher. For each element the supported content elements and attributes are listed. If
elements have shared supported attributes, these are noted as a group and are listed in
the subsequent table, Property Groups. For example, several elements share the content
element inline. Rather than list the inline properties each time, each entry notes
that "inline-properties" are supported. The list of inline-properties can then be found in
the Property Groups table.

Element Supported Content Elements Supported Attributes

basic-link external-graphic
inline
leader
page-number
page-number-citation
basic-link
block
block-container
table
list-block
wrapper

inline-properties
external-destination
internal-destination

bidi-override bidi-override
external-graphic
instream-foreign-object
inline
leader
page-number
page-number-citation
basic-link

inline-properties

Supported XSL-FO Elements B-1

Element Supported Content Elements Supported Attributes

block external-graphic
inline
page-number
page-number-citation
basic-link
block
block-container
table
list-block
wrapper

block-properties

block-container block
block-container
table
list-block
wrapper

block-properties

conditional-page-master-
reference

N/A master-reference
page-position

• first

• rest

• any

• inherit

odd-or-even

• odd

• even

• any

• inherit

blank-or-not-blank

• blank

• not-blank

• any

• inherit

external-graphic N/A graphic-properties
src

B-2 Oracle XML Publisher User’s Guide

Element Supported Content Elements Supported Attributes

flow block
block-container
table
list-block
wrapper

flow-properties

inline external-graphic
inline
leader
page-number
page-number-citation
basic-link
block
block-container
table
wrapper

inline-properties

instream-foreign-object N/A graphic-properties

layout-master-set page-sequence-master
simple-page-master
simple-page-master
page-sequence-master

N/A

leader N/A inline-properties

list-block list-item block-properties

list-item list-item-label
list-item-body

block-properties

list-item-body block
block-container
table
list-block
wrapper

block-properties

list-item-label block
block-container
table
list-block
wrapper

block-properties

page-number N/A empty-inline-properties

page-number-citation N/A empty-inline-propertiesref-id

Supported XSL-FO Elements B-3

Element Supported Content Elements Supported Attributes

page-sequence static-content
flow

inheritable-properties
id
master-reference
initial-page-number
format

page-sequence-master single-page-master-reference
repeatable-page-master-reference
repeatable-page-master-
alternatives

master-name

region-after N/A side-region-properties

region-before N/A side-region-properties

region-body N/A region-properties
margin-properties-CSS
column-count

region-end N/A side-region-properties

region-start N/A side-region-properties

repeatable-page-master-
alternatives

conditional-page-master-
reference

maximum-repeats

repeatable-page-master-
reference

N/A master-reference maximum-
repeats

root layout-master-set
page-sequence

inheritable-properties

simple-page-master region-body
region-before
region-after
region-start
region-end

margin-properties-CSS
master-name
page-height
page-width
writing-mode
lr-tb

single-page-master-
reference

N/A master-reference

static-content block
block-container
table
wrapper

flow-properties

table table-column
table-header
table-footer
table-body

block-properties

B-4 Oracle XML Publisher User’s Guide

Element Supported Content Elements Supported Attributes

table-body table-row inheritable-properties
id

table-cell block
block-container
table
list-block
wrapper

block-properties
number-columns-spanned
number-rows-spanned

table-column N/A inheritable-properties
column-number column-width
number-columns-repeated

table-footer table-row inheritable-properties
id

table-header table-row inheritable-properties
id

table-row table-cell inheritable-properties
id

wrapper inline
page-number page-number-
citation
basic-link
block
block-container
table
wrapper

inheritable-properties
id

Property Groups Table
The following table lists the supported properties belonging to the attribute groups
defined in the preceding table.

Property Group Properties

area-properties overflow (visible, hidden)
writing-mode (lr-tb, rl-tb, lr, rl)
baseline-shift (baseline, sub, super)
vertical-align

block-properties inheritable-properties
id

Supported XSL-FO Elements B-5

Property Group Properties

border-padding-background-properties background-color
background-image
background-position-vertical
background-position-horizontal
border
border-after-color
border-after-style (none, solid)
border-after-width
border-before-color
border-before-style (none, solid)
border-before-width
border-bottom
border-bottom-color
border-bottom-style (none, solid)
border-bottom-width
border-color
border-end-color
border-end-style (none, solid)
border-end-width
border-left
border-left-color
border-left-style (none, solid)
border-left-width
border-right
border-right-color
border-right-style (none, solid)
border-right-width
border-start-color
border-start-style (none, solid)
border-start-width
border-top
border-top-color
border-top-style (none, solid)
border-top-width
border-width
padding
padding-after
padding-before
padding-bottom
padding-end
padding-left
padding-right
padding-start
padding-top

B-6 Oracle XML Publisher User’s Guide

Property Group Properties

box-size-properties height
width

character-properties font-properties
text-decoration

empty-inline-properties character-properties
border-padding-background-properties
id
color

flow-properties inheritable-properties
id
flow-name

font-properties font-family
font-size
font-style (normal, italic, oblique)
font-weight (normal, bold)
table-omit-header-at-break (TRUE, FALSE,
inherit)
table-omit-footer-at-break (TRUE, FALSE,
inherit)

graphic-properties border-padding-background-properties
margin-properties-inline
box-size-properties
font-properties
keeps-and-breaks-properties-atomic
id

inheritable-properties border-padding-background-properties
box-size-properties margin-properties-inline
area-properties
character-properties
line-related-properties
leader-properties
keeps-and-breaks-properties-block color

inline-properties inheritable-properties
id

keeps-and-breaks-properties-atomic break-after (auto, column, page)
break-before (auto,column)

keeps-and-breaks-properties-block keeps-and-breaks-properties-inline

Supported XSL-FO Elements B-7

Property Group Properties

keeps-and-breaks-properties-inline keeps-and-breaks-properties-atomic
keep-together
keep-together.within-line
keep-together.within-column
keep-together.within-page

leader-properties leader-pattern (rule, dots)
leader-length
leader-length.optimum (solid)
rule-thickness

line-related-properties text-align (start, center, end, justify, right,
inherit)
text-align-last (start, center, end, justify, left,
right, inherit)
text-indent
linefeed-treatment (ignore, preserve, treat-as-
space, treat-as-zero-width-space, inherit)
white-space-treatment (ignore, preserve,
ignore-if-before-linefeed, ignore-if-after-
linefeed, ignore-if-surrounding-linefeed,
inherit)
white-space-collapse (FALSE, TRUE, inherit)
wrap-option (no-wrap, wrap, inherit)
direction (ltr)

margin-properties-block margin-properties-CSS
space-after
space-after.optimum
space-before
space-before.optimum
start-indent
end-indent

margin-properties-CSS margin
margin-bottom
margin-left
margin-right
margin-top

margin-properties-inline margin-properties-block
space-start
space-start.optimum
space-end
space-end.optimum

B-8 Oracle XML Publisher User’s Guide

Property Group Properties

region-properties border-padding-background-properties
area-properties
region-name

side-region-properties region-properties
extent

Supported XSL-FO Elements B-9

Index

A
administration
configuration tab, 8-2

alignment
RTF template, 2-38

APIs, 10-1

B
background support
RTF templates, 2-41

bidirectional language alignment
RTF template, 2-38

body tags
PDF template, 3-8
RTF template, 2-13

brought forward/carried forward page totals, 2-63
buffering mode
delivery server, 11-24

C
calculations in PDF template, 3-13
calendar profile option, 2-97
calendar specification, 2-97
cell highlighting
conditional in RTF templates, 2-58

charts
building in RTF templates, 2-15

check box placeholder
creating in PDF template, 3-6

check box support
RTF templates, 2-47

choose statements, 2-53
clip art support, 2-26
columns
fixed width in tables, 2-39

common region, 12-1
APIs, 12-5

concurrent manager, 6-1, 6-1
concurrent program
for data template, 9-20

conditional columns
rtf template, 2-55

conditional formatting, 2-51
table rows, 2-57

conditional formatting features, 2-51
configuration
data definition level, 5-3
template level, 5-9

configuration file, A-1
<properties> element, A-3
<root> element, A-2
delivery manager, 11-34
structure, A-2

configuration properties
precedence of levels, 8-2

configuration tab
administration, 8-2

context command, 2-102
Copy Template page, 5-6
Create Data Definition page, 5-2
field definitions, 5-2

Create Template page
field definitions, 5-4

cross-tab reports, 2-80
CUPS setup, 11-36
currencies
defining format sets, 8-16

D
Data Definition
creating in Template Manager, 5-2

data definition properties
setting, 5-3

data template
calling, 9-20
constructing, 9-5
setting up concurrent program for, 9-20

data template definition, 9-2
date fields in RTF templates, 2-39
date formatting
RTF templates, 2-85

default template, 5-5
default template file, 5-4
delivery channels
adding custom, 11-28

delivery manager
configuration file, 11-34

delivery server
buffering mode, 11-24

Index-1

direct mode, 11-24
global properties, 11-26
multiple requests, 11-27

delivery status, 11-26
direct mode
delivery server, 11-24

document viewer, 12-1
APIs, 12-5
implementing, 12-3
parameters, 12-1

downloaded PDFs as templates, 3-15
drawing support, 2-26
drop-down form field support
RTF templates, 2-48

dynamic data columns, 2-83
example, 2-84

dynamic table of contents in RTF template, 2-46

E
e-mail delivery, 11-2
editing templates from the Template Manager, 5-7
enabling a translation, 5-12
etext data tables, 4-5
etext template command rows, 4-5
etext template setup command table, 4-12

F
fax delivery, 11-9
fixed-width columns
RTF templates, 2-39

FO
supported elements, B-1

FO elements
using in RTF templates, 2-107, 7-4

font definitions
configuration file, A-4

font fallback mechanism, 8-12
font files
administration, 8-10
location, 8-13
uploading, 8-10

font mapping
administration, 8-10

fonts
external, 2-98
setting up, 2-98

footers
RTF template, 2-13

for-each-group XSL 2.0 standard, 2-67
form field method
inserting placeholders, 2-7

form field properties options in PDF template, 3-6
form fields in the PDF template, 3-4
formatting options in PDF templates, 3-6
FTP delivery, 11-13

G
generating output, 6-1
global properties
delivery server, 11-26

groups
basic RTF method, 2-10
defining in PDF template, 3-8
defining in RTF template, 2-10
syntax, 2-10

defining in RTF templates, 2-5
form field method, 2-11
grouping scenarios in RTF template, 2-10
in RTF templates, 2-5

H
headers and footers
inserting placeholders, 2-13
multiple, 2-13
resetting within one output file, 2-78
RTF template, 2-13

horizontal table break, 2-83
HTTP
delivering documents over, 11-18

hyperlinks
inserting in RTF template, 2-45

I
IF statements
in free-form text, 2-52

if statements, 2-51, 2-51
if-then-else statements, 2-53
images
including in RTF template, 2-14

importing templates, 2-108
incomplete translations, 5-12

L
languages
adding templates for , 5-8

locales
configuration file, 8-12

M
markup
adding to the PDF template, 3-4
adding to the RTF template, 2-6

multicolumn page support, 2-40
multiple headers and footers
RTF template, 2-13

N
Namespace support in RTF template, 2-102
native page breaks and page numbering, 2-37

Index-2

number formatting
RTF templates, 2-85

O
Out of memory error
avoiding, 8-3

overflow data in PDF templates, 3-15

P
page breaks
PDF templates, 3-9
RTF template, 2-37, 2-43

page breaks and page numbering
native support, 2-37

page number
setting initial
RTF templates, 2-44

page numbers
PDF templates, 3-9
restarting within one output file, 2-78
RTF template, 2-37

page totals
brought forward/carried forward, 2-63
inserting in RTF template, 2-60

parameters
defining in RTF template, 2-74

PDF template
template mapping, 5-4

PDF template mapping, 5-5, 5-8
PDF templates
adding markup, 3-4
completed example, 3-14
defining groups, 3-8
definition of, 3-1
downloading PDFs to use as templates, 3-15
overflow data, 3-15
page breaks, 3-9
page numbering, 3-9
placeholders
check box, 3-6
naming, 3-5
naming to avoid mapping, 3-5
radio button group, 3-7
text, 3-5
types of, 3-5

placement of repeating fields at runtime, 3-15
runtime behaviors, 3-15
sample purchase order template, 3-2
saving as Adobe Acrobat 5.0 compatible, 3-2
sources for document templates, 3-2
supported modes, 3-2
when to use, 3-1

placeholders
basic RTF method, 2-7, 2-7
form field RTF method, 2-7, 2-7
in PDF templates, 3-4

in RTF templates, 2-5
defining, 2-5, 2-6

inserting in the header and footer of RTF
template, 2-13
PDF templates
check box, 3-6
naming, 3-5
naming to avoid mapping, 3-5
radio button group, 3-7
text, 3-5
types of, 3-5

predefined fonts, 8-13
previewing a template, 5-7
printing, 11-6
process overview, 1-3
design time, 1-3
runtime, 1-4

progress indicator
translations, 5-12

properties
setting at template level, 2-76

properties element
configuration file, A-3

publishing, 6-1

R
radio button group
creating in PDF templates, 3-7

regrouping, 2-67
repeating elements
See groups

Rich Text Format (RTF)
definition, 2-1

row breaking
preventing in RTF templates, 2-39

row formatting
conditional, 2-57

RTF placeholders
syntax, 2-6

RTF template
adding markup, 2-6
applying design elements, 2-6
definition, 2-1
designing, 2-2
groups, 2-5
including images, 2-14
native formatting features, 2-37
placeholders, 2-5
prerequisites, 2-2
sample template design, 2-3
supported modes, 2-2
basic method, 2-2
form field method, 2-2
using XSL or XSL:FO, 2-2

RTF template design
headers and footers, 2-13

RTF template placeholders, 2-6

Index-3

running totals
RTF templates, 2-66

runtime properties
data definition, 5-3

S
sample RTF template
completed markup, 2-9

section context command, 2-78
secure ftp
delivery, 11-14

seeded templates
deleting, 5-7
modifying, 5-7

setting the initial page number
RTF templates, 2-44

shape support, 2-26
sorting
RTF template, 2-67

SQL functions
using in RTF templates, 2-99
XML Publisher syntax for, 7-1

SQL functions extended for XML Publisher, 7-1
Standard Request Submission, 6-1
status indicator
translations, 5-12

subtemplates
defining in your template, 2-108

syntax
RTF template placeholder, 2-6

T
table features
fixed-width columns, 2-39
preventing rows breaking across pages
RTF template, 2-39

table features
repeating table headers
RTF template, 2-38

RTF template, 2-38
table of contents support
RTF template, 2-46
dynamic TOC, 2-46

tables
best practices for formatting, 2-107

tables
horizontal table break, 2-83

template
defining in Template Manager, 5-4

Template Builder, 2-3
Template Manager
accessing, 5-1
copying a template, 5-6
creating a Data Definition, 5-2
defining the template, 5-4
description, 1-2

editing templates, 5-7
previewing a template, 5-7
template mapping, 5-8
updating a template, 5-6
viewing a template, 5-6

Template Manager
features, 5-1

template mapping, 5-4, 5-5
template properties
setting, 5-9

templates
copying, 5-6
editing in the Template Manager, 5-7
updating, 5-7

temporary directory
setting, 8-3

text placeholder
creating in PDF template, 3-5

totals
brought forward/carried forward, 2-63
inserting page totals in RTF template, 2-60
running
RTF templates, 2-66

translatable templates, 5-9
translations
enabling, 5-12
incomplete, 5-12
progress indicator, 5-12
status indicator, 5-12

U
Update Configuration button
data definition, 5-3
templates, 5-9

updateable variables
RTF templates, 2-74

updating a data definition, 5-3
updating a template, 5-6
user interfaces, 1-2

V
variables
RTF templates, 2-74

viewing a data definition, 5-3
viewing a template, 5-6

W
watermarks
RTF templates, 2-41

WebDAV delivery, 11-10

X
XLIFF file, 5-10
XML data file

Index-4

example, 2-4
XML file
how to read, 2-4

XML Report Publisher concurrent request
description, 1-2

XML Report Publisher program, 6-1
XPath Support in RTF Templates, 2-99
XSL elements
apply a template rule, 2-105
call template, 2-106

copy the current node, 2-105
define the root element of the stylesheet, 2-106
import stylesheet, 2-106
template declaration, 2-106
using in RTF templates, 2-105
variable declaration, 2-106
XML Publisher syntax for , 7-3

XSL:FO elements
using in RTF templates, 2-99

Index-5

	Oracle XML Publisher User’s Guide
	Preface
	User’s Guide
	XML Publisher Introduction
	Introduction
	Process Overview
	Structure of this Manual

	Creating an RTF Template
	Introduction
	Supported Modes
	Prerequisites

	Overview
	Using the XML Publisher Template Builder
	Associating the XML Data to the Template Layout

	Designing the Template Layout
	Adding Markup to the Template Layout
	Creating Placeholders
	Defining Groups

	Defining Headers and Footers
	Native Support

	Images and Charts
	Images
	Chart Support

	Drawing, Shape and Clip Art Support
	Supported Native Formatting Features
	General Features
	Alignment
	Tables
	Date Fields
	Multicolumn Page Support
	Background and Watermark Support

	Template Features
	Page Breaks
	Initial Page Number
	Hyperlinks
	Table of Contents
	Check Boxes
	Drop Down Lists

	Conditional Formatting
	If Statements
	If Statements in Boilerplate Text

	If-then-Else Statements
	Choose Statements
	Column Formatting
	Row Formatting
	Cell Highlighting

	Page-Level Calculations
	Displaying Page Totals
	Brought Forward/Carried Forward Totals
	Running Totals

	Data Handling
	Sorting
	Regrouping the XML Data

	Variables, Parameters, and Properties
	Using Variables
	Defining Parameters
	Setting Properties

	Advanced Report Layouts
	Batch Reports
	Cross-Tab Support
	Dynamic Data Columns

	Number and Date Formatting
	Currency Formatting

	Calendar and Time Zone Support
	Using External Fonts
	Advanced Design Options
	XPath Overview
	Namespace Support
	Using the Context Commands
	Using XSL Elements
	Using FO Elements

	Best Practices
	Using Tables
	Using Subtemplates

	Creating a PDF Template
	PDF Template Overview
	Supported Modes

	Designing the Layout
	Adding Markup to the Template Layout
	Creating a Placeholder
	Defining Groups of Repeating Fields

	Adding Page Numbers and Page Breaks
	Performing Calculations
	Completed PDF Template
	Runtime Behavior
	Creating a Template from a Downloaded PDF

	eText Templates
	Introduction
	Structure of eText Templates
	Constructing the Data Tables
	Command Rows
	Structure of the Data Rows

	Setup Command Tables
	Expressions, Control Structure, and Functions
	Identifiers, Operators, and Literals

	Using the Template Manager
	Introduction
	Creating the Data Definition
	Viewing and Updating a Data Definition

	Creating the Template
	Copying a Template

	Viewing and Updating a Template
	Updating the Template General Definitions
	Previewing a Template
	Editing the Template Layout
	Adding Localized Templates for Additional Languages
	Mapping PDF Template Fields
	Setting Runtime Properties for a Template

	Translatable Templates

	Generating Your Customized Report
	Using the Concurrent Manager to Generate Your Custom Output

	XML Publisher Extended Functions
	Extended SQL Functions
	XSL Equivalents
	Using FO Elements

	Implementation and Developer’s Guide
	Administration
	XML Publisher Administration
	Configuration
	Uploading Font Files
	Creating Font Mappings
	Locales
	Font Fallback Logic
	Font File Location
	Predefined Fonts
	Defining Currency Formats

	Data Templates
	Introduction
	The Data Template Definition
	Constructing the Data Template
	How to Call a Data Template
	Sample Data Templates

	Calling XML Publisher APIs
	Introduction
	XML Publisher Core APIs

	PDF Form Processing Engine
	RTF Processor Engine
	FO Processor Engine
	PDF Document Merger
	Document Processor Engine
	XML Publisher Properties
	Applications Layer APIs
	Datasource APIs
	Template APIs

	Delivery Manager
	Introduction
	Delivering Documents via e-Mail
	Delivering Your Document to a Printer
	Delivering Your Documents via Fax
	Delivering Your Documents to WebDAV Servers
	Deliver Your Documents Using FTP
	Delivering Documents over Secure FTP
	Delivering Documents over HTTP
	Delivering Documents via AS2
	Direct and Buffering Modes
	Monitoring Delivery Status
	Global Properties
	Delivering Multiple Requests with a Single Output Stream
	Adding a Custom Delivery Channel
	Configuration File Support
	Setting Up CUPS

	Integrating the Document Viewer into an Application
	Overview
	Parameters
	Implementing the Document Viewer in an Application Page
	Document Viewer Common Region APIs

	XML Publisher Configuration File
	XML Publisher Configuration File
	Structure
	Properties
	List of Available Properties
	Font Definitions

	Supported XSL-FO Elements
	Supported XSL-FO Elements

	Index

